A SEMIPERMEABLE INTERFACE MODEL FOR THE GENESIS OF SUBSEAFLOOR REPLACEMENT-TYPE VOLCANOCgenic MASSIVE SULFIDE (VMS) DEPOSITS

Stephen J. Piercey†

Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3X5

Abstract

Subseafloor replacement-style volcanogenic massive sulfide (VMS) deposits are a subset of VMS deposits where sulfides have replaced unconsolidated volcanic, volcano-sedimentary, and sedimentary material. These deposits are anomalously large and are important global sources of metals. They have distinct textures at the sulfide-ore interface, including bed-by-bed replacement of sedimentary layers, and typically fill void space between unconsolidated volcaniclastic detritus or fractures in flows or intrusions. At the microscale, metal-bearing sulfides have partially to fully replaced framboidal (bacteriogenic) sulfides, or the framboidal sulfides have acted as nuclei upon which additional metalliferous massive sulfide is deposited.

The textures presented are reconciled within a semipermeable interface model for replacement. In this model unconsolidated sediment, volcaniclastic rocks, or fractured coherent volcanic rocks provide a permeable to semipermeable interface that allowed ingress of cold seawater into the pore spaces of the stratigraphic sequence prior to and during lulls in hydrothermal activity. Seawater sulfate in the pore water is partially reduced by bacteria to provide reduced sulfur (H2S) as well as framboidal pyrite in the host sequence(s). The reduced sulfur and framboidal pyrite, as well as the cool pore water, provided a thermal, redox, and chemical gradient in which upwelling hydrothermal fluids interact. In such an environment rising hydrothermal fluids mix with cold water, not only at the seawater interface leading to exhalative sulfide deposition, but also in the subseafloor leading to sulfide precipitation via replacement. The upwelling hydrothermal fluids can also interact with bacterial H2S in the pore spaces of the unconsolidated material, resulting in additional subseafloor precipitation of metal sulfides. The fluids also result in replacement of framboidal pyrite nuclei pseudomorphous after the original framboidal masses. This semipermeable interface also favors enhanced zone refining, assuming the hydrothermal system is sufficiently long lived, leading to upgrading of the tenor of the sulfides with well-developed metal zoning, as observed in many ancient replacement-type deposits. Furthermore, the precipitation of a significant subseafloor sulfide mineralization results in greater trapping of metals from upwelling fluids and larger tonnage deposits with greater contained metal.

This model may also be applicable to other replacement-type deposits in broadly similar geologic and hydrothermal environments (e.g., sediment-hosted and Irish-type Zn-Pb deposits). Additional, critical tests are required to validate and refute the model and potential tests are presented herein.

Introduction

Volcanogenic massive sulfide (VMS) deposits are critical sources of base and precious metals (e.g., Franklin et al., 2005). Current models for both modern seafloor massive sulfides and ancient VMS suggest that sulfide mineralization forms via the mixing of hydrothermal fluids with ambient seawater (Lydon, 1988; Galley, 1993; Humphris and Tivey, 2000; German and Von Damm, 2003; Franklin et al., 2005; Hannington et al., 2005). However, this mixing process is very inefficient and in some cases >95% of the metals are lost to the overlying water column with only a minor amount precipitated in the sulfide deposits (Converse et al., 1984). Correspondingly, modern seafloor massive sulfides are smaller and constitute a fraction of the resources currently identified on land (Hannington et al., 2011). In contrast, ancient VMS have much larger median tonnages and greater contained metals (Franklin et al., 2005). Part of this bias resides in the status of exploration of seafloor deposits (e.g., Jamieson et al., 2014), particularly our inability to explore in the third dimension on the seafloor, something commonplace for deposits on land. A second factor is the style of formation of ancient deposits. Many ancient VMS deposits are interpreted to have formed similar to modern seafloor hydrothermal deposits via exhalation of fluids on the seafloor (i.e., exhalative VMS deposits). Other ancient deposits,
however, have formed fully to partially beneath the seafloor via the replacement of subseafloor strata (subseafloor replacement-type deposits, e.g., Large, 1992; Zaw and Large, 1992; Galley et al., 1993; Doyle and Huston, 1999; Hannington et al., 1999; Large et al., 2001; Doyle and Allen, 2003; Piercey et al., 2014). Ancient subseafloor replacement-type deposits are commonly much larger and have greater contained metals than exhalative deposits (Doyle and Allen, 2003; Franklin et al., 2005).

Despite their economic and scientific significance, understanding of ore-forming processes and genesis of subseafloor replacement-type deposits is incomplete. In this paper, macro- and microscale observations are documented and a semipermeable interface model is proposed that provides insight into the processes that form subseafloor replacement-type VMS deposits. The results have implications into how VMS deposits form but are also relevant to other exhalative-to-replacement-type ore systems (e.g., sediment-hosted and Irish-type Zn-Pb deposits).

Textural Observations for Subseafloor Replacement

The macro- to microscale textural preservation of subseafloor replacement sulfides and relationships to bounding rocks has been documented but can be difficult to reconcile in ancient deposits due to deformation and metamorphism. Correspondingly, exceptionally well preserved examples are required to document replacement and provide insight into replacement process. Three examples are provided below where the relationships between mineralization and host rocks are very well preserved at various scales, particularly on the sulfide deposit-host rock replacement interface. The deposits include the ~347 Ma shale- and volcanic-rich Wolverine deposit (Yukon-Tanana terrane, Yukon, Canada; Bradshaw et al., 2008), and the Cambrian (~509 Ma) Boundary (volcaniclastic-dominated) and Duck Pond (flow-dominated) deposits (Tally Pond belt, Newfoundland, Canada; Squires and Moore, 2004; McNicoll et al., 2010; Piercey et al., 2014; Fig. 1). In the Wolverine deposit, parts of the deposit contain massive sphalerite-galena-pyrite-rich sulfides that have bed-by-bed replacement textures with surrounding carbonaceous shales (Fig. 1a). In the Boundary VMS deposit, pyrite-chalcopyrite-sphalerite-rich sulfides show replacement textures with rounded lapilli tuff units at the contact with more coherent rhyolite flows; they also contain chlorite-sericite-quartz-altered fragments within the sulfides common to replacement-type sulfides (Fig. 1b, d; Piercey et al., 2014). The Duck Pond deposit is hosted

![Fig. 1. Macroscale to microscale textures associated with subseafloor replacement. A. Replacement of shales by sphalerite-pyrite-rich massive sulfide. Massive sulfide has relict beds preserved within the sulfide (Wolverine deposit). B. Drill core with sulfides in between sericite-chlorite-altered rhyolite clasts (Boundary deposit). C. Polygonally jointed rhyolite flow with joints replaced by pyrite (Duck Pond deposit). D. Massive pyrite-chalcopyrite with chlorite-altered rhyolite clasts of host volcanic rocks (Boundary deposit).](image-url)
primarily within rhyolite flows and a flow-dome complex with volcaniclastic rocks proximal to carbonaceous shales that are variably faulted (Squires et al., 2001; McNicoll et al., 2010). The massive sulfide at Duck Pond is found in between polygonally jointed rhyolite breccia and locally interfingers with surrounding volcaniclastic units similar to Boundary (Fig. 1c; McNicoll et al., 2010). The macrotextural features preserved in all of these deposits suggest replacement of unconsolidated and permeable/semipermeable sediment and volcanic/volcaniclastic material.

Microtextural features provide further evidence for replacement processes. In both the Duck Pond and Boundary deposits’ frambooidal pyrite of likely biogenic origin (e.g., Piercey et al., 2013) are found as cores or islands within larger euhedral pyrite grains, sheets of pyrite, or sheets of chalcopyrite, sphalerite, and galena, implying that the frambooids served as nuclei for additional crystal growth (Fig. 2a-d). In Wolverine and Duck Pond, there is partial bud-by-bud replacement of frambooids, and in some cases complete replacement of pre-existing frambooids, by sphalerite, galena, and chalcopyrite during zone refining of the deposits (Fig. 2e-p; e.g., Eldridge et al., 1983).

Semipermeable Interface Model

The textures above illustrate that replacement is an important process in some ancient VMS deposits. Any model for replacement-type VMS deposits must account for both the requirement of partial or complete permeability of host stratigraphy (Doyle and Allen, 2003) and a mechanism to induce precipitation (e.g., cooling, mixing, etc.). The textures outlined above provide some insight into the possible processes that may have been important in forming replacement-type VMS systems and are encompassed within a semipermeable interface model.

In this model the footwall stratigraphic succession consists of permeable to semipermeable strata (e.g., volcaniclastic rocks, fracture coherent rocks, and/or sedimentary rocks) that are unconsolidated. Unconsolidated units allow ingress of seawater into the pore spaces of the stratigraphic succession prior to and during hulls in hydrothermal activity, providing

Fig. 2. Microscale textures associated with subsurface replacement. A. Photomicrograph of framboidal pyrite surrounded by zoned euhedral pyrite and both partially replaced by chalcopyrite. B. Differential interference contrast image of (A), illustrating zoning and textural relationships between mineral types (Duck Pond deposit). C. Coalesced frambooids surrounded by euhedral pyrite within a sea of chalcopyrite, suggesting that the frambooids were nuclei for growth of new phases (Boundary deposit). D. Differential interference contrast image of frambooidal pyrite as nuclei for massive euhedral pyrite sheets (Boundary deposit). E. Scanning electron microscope-backscatter electron (SEM-BSE) image of frambooidal pyrite partially replaced by galena. F. Scanning electron microscope-energy dispersive energy dispersive X-ray (SEM-EDS) semiquantitative elemental map of Duck Pond deposit (E). G. Frambooids partially to fully replaced by sphalerite and chalcopyrite. H. SEM-EDS semiquantitative elemental map of Wolverine deposit (G). I. SEM-BSE image of full replacement of frambooids by galena, sphalerite, and chalcopyrite. J. SEM-EDS semiquantitative elemental map of Wolverine deposit (H). K. SEM-BSE image of partially to replaced pyrite frambooids by galena (white), along with subhedral pyrite and chalcopyrite (Duck Pond deposit). L. SEM-BSE image of coalesced pyrite frambooids surrounded by galena (white) near euhedral pyrite (Duck Pond deposit). M. SEM-BSE image of sheet of sphalerite with chalcopyrite surrounding frambooidal pyrite nuclei. N. SEM-EDS semiquantitative elemental map of Duck Pond deposit (M). O. SEM-BSE image of pyrite frambooids forming nuclei for surrounding recrystallized, subhedral pyrite, chalcopyrite, sphalerite and being partly to fully replaced by galena (Duck Pond deposit). P. SEM-BSE image of relict pyrite frambooids partly replaced by galena surrounded by sheets of euhedral pyrite (Wolverine deposit). Abbreviations: Cep = chalcopyrite, Gn = galena, Py = pyrite, Py(E) = euhedral pyrite, Py(F) = frambooidal pyrite, Py(R) = recrystallized, Sp = sphalerite, Wolv = Wolverine.
environments for bacterial reduction of seawater sulfate and generation of \(\text{H}_2\text{S} \), and loci for framboidal pyrite (Fig. 3; e.g., Ohmoto and Goldhaber, 1997; Seal and Wandless, 2003; Seal, 2006). Furthermore, the abundance of cool seawater in the stratigraphic pile creates a semipermeable interface with temperature, redox, and chemical gradients with which hotter, rising hydrothermal fluids could interact (Fig. 3).

In normal VMS hydrothermal systems sulfides precipitate due to hydrothermal fluid-seawater mixing at the vent-seawater interface, but with only a minority of the metal

![Diagram](image_url)

Fig. 3. A. Ambient environment for massive sulfides with sedimentary- (B), volcaniclastic- (C) and flow-dominated (D) sub-settings. In these environments primary porosity and permeability allow the ingress of seawater into the volcanic to sedimentary pile. Seawater sulfate in the primary pile is partly reduced to \(\text{H}_2\text{S} \) by sulfate-reducing bacteria leading to an environment dominated by sediment and volcanic particles with abundant, relative low temperature (<25°C) pore water and reduced sulfur. In addition, bacterial derived \(\text{H}_2\text{S} \) forms framboidal pyrite by reacting with iron in the volcanic and sediment pile. E. Influx of VMS hydrothermal fluid below results in the mixing between the upwelling hydrothermal fluids and the porewater and \(\text{H}_2\text{S} \) – sedimentary- (F), volcaniclastic- (G) and flow-dominated (H) environments. The mixing with porewater results in deposition of sulfide due to cooling, and additional sulfide is precipitated by reacting with \(\text{H}_2\text{S} \). Furthermore, existing framboidal pyrite provide nuclei which new sulfides can replace or overgrow. This shallow subsalloor interface was likely to be partially to fully connected to overlying seawater (i.e., semipermeable interface) and the process of replacement coincided with and was succeeded by zone refining and replacement of lower temperature, earlier formed Zn-Pb-Fe-rich assemblages by higher temperature Cu-rich assemblages leading to the metal and mineralogical zoning found in many replacement-type VMS deposits.
precipitating from the fluid (e.g., Converse et al., 1984). The presence of a semipermeable interface would greatly enhance the probability and abundance of metal precipitation. First, cold seawater in the subseaﬂoor strata would create a thermal gradient and increase the amount of hydrothermal ﬂuid-sea-
water mixing, leading to greater metal precipitation at both the seawater-vent interface and in the subseaﬂoor stratigraphic pile (Fig. 3; Gibson et al., 1999; Doyle and Allen, 2003). The unconsolidated nature of the subseaﬂoor materials also allow lateral transport of the hydrothermal ﬂuids and precipitation of additional mineralization distal from the main synvolcanic structures that control hydrothermal ﬂuid ﬂow (e.g., Piercey et al., 2014). Precipitation would also be enhanced by the presence of bacterial H2S in the pore spaces of the uncon-
consolidated material, resulting in greater metal precipitation than dissipation into the water column (Fig. 3), similar to sediment-hosted Zn-Pb or Irish-type deposits (e.g., Goodfell-
low, 1987; Fallick et al., 2001). Framboidal pyrite associated with the bacterial activity also contributes to sulﬁde precipitation acting as nuclei for the precipitation of sulﬁde from the subsequent hydrothermal ﬂuids, either through partial or full replacement of the original framboid, or as framboidal nuclei around which sulﬁde sheets grow (Figs. 2, 3).

The semipermeable interface also favors enhanced zone reﬁning of the sulﬁdes, assuming that that hydrothermal sys-
tem is long lived. Early formed Zn-Pb-Fe replacement-type sulﬁdes can act as a semipermeable cap, allowing for success-
vively higher temperature Cu-rich ﬂuids to reﬁne the mound (Figs. 2, 3; Eldridge et al., 1983; Large, 1992; Ohmoto, 1996; Schardt and Large, 2009). This would allow for the dissolution of earlier formed Zn-Pb mineralization and subsequent repre-
cipitation of the Zn-Pb material closer to the seawater-vent interface, coupled with precipitation of Cu-(Fe)-rich sulﬁdes at the base of the sulﬁde zone, leading to increases in both zonation and metal tenor (Fig. 3; Eldridge et al., 1983; Large, 1992; Ohmoto, 1996; Schardt and Large, 2009).

Implications and Testable Consequences

There are implications and testable consequences of the semipermeable interface model for subseaﬂoor replacement-
style VMS deposits. The thermal, redox, and chemical inter-
face between the seawater and impermeable seaﬂoor provides an ideal environment to enhance and increase the amount of metal precipitated during hydrothermal venting and partly explains why many large ancient VMS deposits are associated with subseaﬂoor replacement (e.g., Doyle and Allen, 2003). Replacement processes also lead to creation of a semiperme-
able cap, which enhances zone reﬁning of the sulﬁde deposit, leading to upgrading of existing mineral assemblages and their grades, which can increase the contained metal of a deposit (Eldridge et al., 1983; Ohmoto, 1996; Schardt and Large, 2009). Replacement is also important in other mineral deposit types, including sediment-hosted Zn-Pb deposits (e.g., Kelley et al., 2004; Gleeson et al., 2013) and Irish-type Zn-Pb deposits (e.g., Wilkinson et al., 2005). These deposits are also large and the mixing between upwelling hydrothermal ﬂuids with H2S-bearing seawater in the shallow subsurface is well docu-
mented (Fallick et al., 2001; Kelley et al., 2004; Wilkinson et al., 2005), suggesting that a semipermeable interface model may also be applicable to these giant deposit types as well.

Critical tests of this model are also required to test its validity. The examples shown are from Phanerozoic deposits with varying substrates and provide macro- and microtextural evi-
dence for replacement. While macrotextural evidence has been proposed for numerous deposits globally (e.g., Galley et al., 1995; Doyle and Allen, 2003), microtextural evidence is lacking for many deposits, including those from Precambrian environments. It is anticipated that other replacement-type deposits should exhibit similar microtextures, including fram-
boids acting as nuclei and partial to complete replacement of framoids by other sulﬁde phases (Fig. 2); this information may be partially to fully obscured, however, in highly meta-
morphosed and deformed VMS deposits (e.g., Huston et al., 1995). In addition, replacement-type sulﬁdes should have gangue barite, which would form due to mixing between Ba from the VMS ﬂuids and porewater sulfate. This would be fundamentally different from the bedded barite common to many exhalative VMS deposits (e.g., Ohmoto, 1996). Fur-
thermore, the presence of bacterial H2S within the semiperme-
able zone, coupled with zone reﬁning during ore formation, should result in a distinctive sulﬁde isotope zonation in replacement-
type systems. The outer margins in the semipermeable replacement zone should exhibit δ34S values that are generally more negative and mixtures between sulfur derived from bac-
terial reduction of seawater sulfate (i.e., δ34S <0) and hydro-
thermal or igneous sulﬁr from the upwelling hydrothermal ﬂuid (δ34S ≥0). In contrast, with depth in the sulﬁde body and distance from the semipermeable replacement zone the sulﬁr isotope values should become more positive, indica-
tive of sulﬁr derived from thermochemical sulﬁte reduction of seawater sulﬁr or igneous sulﬁr leached from basement rocks (e.g., Bradshaw et al., 2008). It is important to note that the low δ34S associated with bacterial sulﬁr inﬂuence can be observed and difﬁcult to determine in deposits that have had magmatic sulﬁr involved in their genesis (e.g., Ry, 1993; Gemmell et al., 2004; Huston et al., 2011); however, the com-
bination of textural relationships (e.g., preserved framoids) and alteration assemblages (e.g., normal VMS assemblages vs. acidic alteration assemblages) may help in delineating bacte-
rial versus magmatic sulﬁr inﬂuences in subseaﬂoor replace-
ment-type VMS deposits.

While replacement is acknowledged as an important pro-
cess in VMS deposits, it is likely that most deposits exhibit both exhalation and replacement processes (Doyle and Allen, 2003). It is likely the balance between the two processes that will likely determine the size and potential metal budgets of VMS and similar deposits. It is the identiﬁcation of these replacement processes in ancient environments that may pro-
vide insight into which deposits have the greatest potential to provide signiﬁcant resources.

Acknowledgments

This research was funded by grants to Piercey, including an NSERC Discovery Grant and the NSERC-Altius Indus-
trial Research Chair in Mineral Deposits funded by NSERC, Altius Resources Inc., and the Research and Development Corporation of Newfoundland and Labrador. I thank numer-
ous colleagues for discussions on research related to mass-
ive sulﬁde emplacement, including Rodney Allen, Jonathan

Critical tests of this model are also required to test its validity. The examples shown are from Phanerozoic deposits with varying substrates and provide macro- and microtextural evidence for replacement. While macrotextural evidence has been proposed for numerous deposits globally (e.g., Galley et al., 1995; Doyle and Allen, 2003), microtextural evidence is lacking for many deposits, including those from Precambrian environments. It is anticipated that other replacement-type deposits should exhibit similar microtextures, including framboids acting as nuclei and partial to complete replacement of framboids by other sulfide phases (Fig. 2); this information may be partially to fully obscured, however, in highly metamorphosed and deformed VMS deposits (e.g., Huston et al., 1995). In addition, replacement-type sulfides should have gangue barite, which would form due to mixing between Ba from the VMS fluids and porewater sulfate. This would be fundamentally different from the bedded barite common to many exhalative VMS deposits (e.g., Ohmoto, 1996). Furthermore, the presence of bacterial H2S within the semipermeable zone, coupled with zone refining during ore formation, should result in a distinctive sulfur isotope zonation in replacement-type systems. The outer margins in the semipermeable replacement zone should exhibit δ34S values that are generally more negative and mixtures between sulfur derived from bacterial reduction of seawater sulfate (i.e., δ34S <0) and hydrothermal or igneous sulfur from the upwelling hydrothermal fluid (δ34S ≥0). In contrast, with depth in the sulfide body and distance from the semipermeable replacement zone the sulfur isotope values should become more positive, indicative of sulfur derived from thermochemical sulfate reduction of seawater sulfate or igneous sulfur leached from basement rocks (e.g., Bradshaw et al., 2008). It is important to note that the low δ34S associated with bacterial sulfur influence can be observed and difficult to determine in deposits that have had magmatic fluids involved in their genesis (e.g., Rye, 1993; Gemmell et al., 2004; Huston et al., 2011); however, the combination of textural relationships (e.g., preserved framboids) and alteration assemblages (e.g., normal VMS assemblages vs. acidic alteration assemblages) may help in delineating bacterial versus magmatic sulfur influences in subseafloor replacement-type VMS deposits.

While replacement is acknowledged as an important process in VMS deposits, it is likely that most deposits exhibit both exhalation and replacement processes (Doyle and Allen, 2003). It is likely the balance between the two processes that will likely determine the size and potential metal budgets of VMS and similar deposits. It is the identification of these replacement processes in ancient environments that may provide insight into which deposits have the greatest potential to provide significant resources.

Acknowledgments

This research was funded by grants to Piercey, including an NSERC Discovery Grant and the NSERC-Altius Industrial Research Chair in Mineral Deposits funded by NSERC, Altius Resources Inc., and the Research and Development Corporation of Newfoundland and Labrador. I thank numerous colleagues for discussions on research related to massive sulfide emplacement, including Rodney Allen, Jonathan Cloutier, Alan Galley, Sarah Gleeson, Harold Gibson, Mark
REFERENCES

