Notes on data space inversion

Peter \& Saeed

Fourth meeting: November 15, 2023

Paper: Pilkington, 2009, 3D magnetic data-space inversion with sparseness constraints.

First, we summarize the data space approach as outlined by Tarantola (2005) and compare to Pilkinton (2009):
The objective function: $\mathrm{S}(\mathbf{m})=\left(A \boldsymbol{m}-\boldsymbol{d}^{\text {obs }}\right)^{\mathrm{T}} C_{D}^{-1}\left(A \boldsymbol{m}-\boldsymbol{d}^{o b s}\right)+\left(\mathbf{m}-\mathbf{m}_{0}\right)^{\mathrm{T}} C_{M}^{-1}\left(\mathbf{m}-\mathbf{m}_{0}\right)$
Here C_{D}^{-1} and C_{M}^{-1} are inverse of data and model covariance matrices, respectively. The sensitivity matrix A is of dimension $N \times M$ (M is the number of model parameters and N is the number of data points). In potential field voxel inversion $M \gg N$.

Minimization of eq. (1) with respect to model parameters yields:

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+\left(A^{T} C_{D}^{-1} A+C_{M}^{-1}\right)^{-1} A^{T} C_{D}^{-1}\left(\boldsymbol{d}^{o b s}-A \mathbf{m}_{0}\right) \tag{2}
\end{equation*}
$$

Which effectively requires the inverse of matrix $A^{T} A$ that is of dimension $M \times M$. Using

$$
\begin{equation*}
\left(A^{T} C_{D}^{-1} A+C_{M}^{-1}\right)^{-1} A^{T} C_{D}^{-1}=C_{M} A^{T}\left(A C_{M} A^{T}+C_{D}\right)^{-1} \tag{3}
\end{equation*}
$$

Using a matrix identity, eq. (2) can be re-written as

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+C_{M} A^{T}\left(A C_{M} A^{T}+C_{D}\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \mathbf{m}_{0}\right) \tag{4}
\end{equation*}
$$

where the inverse of the matrix $A A^{T}$, that is of dimension $N \times N$, is needed. Then, it is more efficient to use eq. (4) in a CG implementation as applied by Pilkington (2009).

In Pilkington (2009), the final solution, in data space, was written as follows (equation (10) in the paper, omitting subscript here):

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+\alpha Q S A^{T}\left(A S Q S^{T} A^{T}+D\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}+A S\left[\boldsymbol{m}-\boldsymbol{m}_{0}\right]\right) \tag{5}
\end{equation*}
$$

The matrix S is diagonal, resulting from the imposition of positivity, and is a function of the model: $S=S(\boldsymbol{m})$. Their Q is also model dependent: $Q=Q(\boldsymbol{m})$. We can simplify equation (5) by ignoring the matrix S (setting it to identity matrix):

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+\alpha Q A^{T}\left(A Q A^{T}+D\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right) \tag{6}
\end{equation*}
$$

Here matrix Q is an $M \times M$ diagonal matrix including depth weighting and sparsity constraint. Comparison of equation (6) with equation (4) shows that $C_{M}=\alpha Q$ and $C_{D}=D$. In Pilkington's formulation of the inverse problem, both depth weighting and sparsity constraint matrices are diagonal, so combining them and inverting to get Q is trivial. Equation (6) can be written as

$$
\begin{equation*}
\Delta \boldsymbol{m}=\boldsymbol{m}-\boldsymbol{m}_{0}=\alpha Q A^{T}\left(A Q A^{T}+D\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right)=\alpha Q A^{T} \boldsymbol{b} \tag{7}
\end{equation*}
$$

The CG algorithm can be used on the following system of equations to compute $\boldsymbol{b}=\left(A Q A^{T}+D\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right)$

$$
\begin{gather*}
\boldsymbol{f}=G \boldsymbol{b} \tag{8}\\
G=\left(A Q A^{T}+D\right) \tag{9}\\
\boldsymbol{f}=\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right) \tag{10}
\end{gather*}
$$

Comparison with minimum structure inversion approach:

The final solution of minimum structure approach, as discussed by Li \& Oldenburg (1996), is

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+\left(A^{T} W_{d}^{T} W_{d} A+W_{m}^{T} W_{m}\right)^{-1} A^{T} W_{d}^{T} W_{d}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right) \tag{11}
\end{equation*}
$$

(note that A is typically written G for potential field problems). It is possible to write this equation in data space as (using eq. (3))

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+\left(W_{m}^{T} W_{m}\right)^{-1} A^{T}\left(A\left(W_{m}^{T} W_{m}\right)^{-1} A^{T}+\left(W_{d}^{T} W_{d}\right)^{-1}\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right) \tag{12}
\end{equation*}
$$

Compare against equation (7). However, here, the matrix $W_{m}^{T} W_{m}$ is typically not diagonal, e.g. if using smoothing regularization, which makes computing its inverse time-consuming, thereby removing the efficiencies offered by the data space formulation.

Extensions:

If someone seeks to achieve a balance between the data misfit and the regularization term in this approach, they may introduce tradeoff parameter β on the model term and obtain:

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+\left(\beta W_{m}^{T} W_{m}\right)^{-1} A^{T}\left(A\left(\beta W_{m}^{T} W_{m}\right)^{-1} A^{T}+\left(W_{d}^{T} W_{d}\right)^{-1}\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right) \tag{13}
\end{equation*}
$$

or if a tradeoff parameter λ is instead introduced on the data misfit term we'd have

$$
\begin{equation*}
\boldsymbol{m}=\boldsymbol{m}_{0}+\left(W_{m}^{T} W_{m}\right)^{-1} A^{T}\left(A\left(W_{m}^{T} W_{m}\right)^{-1} A^{T}+\left(\lambda W_{d}^{T} W_{d}\right)^{-1}\right)^{-1}\left(\boldsymbol{d}^{o b s}-A \boldsymbol{m}_{0}\right) \tag{14}
\end{equation*}
$$

All of the discussion so far has been for L2 norms. If instead we wanted to use Lp norms, Farquharson \& Oldenburg (1998) show that this can be posed in a way that leads to a further iterative procedure involving $W_{m}^{T} R W_{m}$ where R is a function of the model: $R=R(\boldsymbol{m})$.

Farquharson, C. G and Oldenburg, D. W, 1998, Non-linear inversion using general measures of data misfit and model structure, Geophysical Journal International, 134(1), 213-227.

Conclusion:

You can do most things in the data space formulation, including incorporation of a regularization trade-off parameter, and general Lp norms, but it only works if your regularization operator is diagonal.

Here there are some references that uses data space approach:

- Last, B. J. and Kubik, K., 1983, Compact gravity inversion, GEOPHYSICS, 48(6), 713-721.
- Guillen, A. and Menichetti, V., 1984, Gravity and magnetic inversion with minimization of a specific functional, GEOPHYSICS, 49(8), 1354-1360.
- Barbosa, V. C. F. and Silva, J. B. C., Generalized compact gravity inversion, 1994, GEOPHYSICS, 59(1), 57-68.
- Siripunvaraporn, W. and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data, GEOPHYSICS, 65(3), 791-803.
- Boonchaisuk, S., Vachiratienchai , C. and Siripunvaraporn, W., 2008, Two-dimensional direct current (DC) resistivity inversion: Data space Occam's approach, Physics of the Earth and Planetary Interiors, 168, 204-211.

