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First, we summarize the data space approach as outlined by Tarantola (2005) and compare to Pilkinton (2009): 

The objective function:   S(𝐦) = (𝐴𝒎− 𝒅!"#)$𝐶%&'(𝐴𝒎− 𝒅!"#) +	(𝐦 −𝐦()$𝐶)&'(𝐦 −𝐦()																											(1) 

Here 𝐶%&' and 𝐶)&' are inverse of data and model covariance matrices, respectively. The sensitivity matrix A is of 
dimension 𝑁 ×𝑀 (M is the number of model parameters and N is the number of data points). In potential field voxel 
inversion 𝑀 ≫ 𝑁. 

Minimization of eq. (1) with respect to model parameters yields: 

	𝒎 = 𝒎(+(𝐴*𝐶%&'𝐴 + 𝐶)&')&'𝐴*𝐶%&'(𝒅!"# − 𝐴𝐦()																																								(2) 

Which effectively requires the inverse of matrix 𝐴*𝐴 that is of dimension 𝑀 ×𝑀. Using 

(𝐴*𝐶%&'𝐴 + 𝐶)&')&'𝐴*𝐶%&' = 𝐶)𝐴*(𝐴𝐶)𝐴* + 𝐶%)&'																																						(3) 

 Using a matrix identity, eq. (2) can be re-written as  

𝒎 = 𝒎( + 𝐶)𝐴*(𝐴𝐶)𝐴* + 𝐶%)&'(𝒅!"# − 𝐴𝐦()																																								(4) 

where the inverse of the matrix 𝐴𝐴* ,	that is of dimension 𝑁 ×𝑁, is needed. Then, it is more efficient to use eq. (4) 
in a CG implementation as applied by Pilkington (2009).  

In Pilkington (2009), the final solution, in data space, was written as follows (equation (10) in the paper, omitting 
subscript here): 

𝒎 = 𝒎( + 𝛼𝑄𝑆𝐴*(𝐴𝑆𝑄𝑆*𝐴* +𝐷)&'(𝒅!"# − 𝐴𝒎+ 𝐴𝑆[𝒎−𝒎(])																																								(5) 

The matrix S is diagonal, resulting from the imposition of positivity, and is a function of the model: S= S(m). Their Q 
is also model dependent: Q=Q(m). We can simplify equation (5) by ignoring the matrix S (setting it to identity matrix): 

𝒎 = 𝒎( + 𝛼𝑄𝐴*(𝐴𝑄𝐴* +𝐷)&'(𝒅!"# − 𝐴𝒎()																																								(6) 

Here matrix Q is an 𝑀 ×𝑀 diagonal matrix including depth weighting and sparsity constraint. Comparison of 
equation (6) with equation (4) shows that  𝐶) = 𝛼𝑄 and 𝐶% = 𝐷. In Pilkington’s formulation of the inverse problem, 
both depth weighting and sparsity constraint matrices are diagonal, so combining them and inverting to get Q is 
trivial. Equation (6) can be written as  

∆𝒎 = 𝒎−𝒎( = 𝛼𝑄𝐴*(𝐴𝑄𝐴* +𝐷)&'(𝒅!"# − 𝐴𝒎() = 	𝛼𝑄𝐴*𝒃																														(7) 

The CG algorithm can be used on the following system of equations to compute 𝒃 = (𝐴𝑄𝐴* +𝐷)&'(𝒅!"# − 𝐴𝒎() 

𝒇 = 𝐺𝒃																																				(8) 

𝐺 = (𝐴𝑄𝐴* +𝐷)																												(9) 

𝒇 = (𝒅!"# − 𝐴𝒎()																													(10) 

 

https://library.seg.org/doi/abs/10.1190/1.3026538


Comparison with minimum structure inversion approach: 

The final solution of minimum structure approach, as discussed by Li & Oldenburg (1996), is  

𝒎 = 𝒎( + (𝐴*𝑊+
*𝑊+𝐴 +𝑊,*𝑊,)&'𝐴*𝑊+

*𝑊+(𝒅!"# − 𝐴𝒎()																																								(11) 

(note that 𝐴 is typically written 𝐺 for potential field problems). It is possible to write this equation in data space as 
(using eq. (3))  

𝒎 = 𝒎( + (𝑊,*𝑊,)&'𝐴*(𝐴(𝑊,*𝑊,)&'𝐴* + (𝑊+
*𝑊+)&')&'(𝒅!"# − 𝐴𝒎()																																								(12) 

Compare against equation (7). However, here, the matrix 𝑊,*𝑊, is typically not diagonal, e.g. if using smoothing 
regularization, which makes computing its inverse time-consuming, thereby removing the efficiencies offered by 
the data space formulation. 

 

Extensions: 

If someone seeks to achieve a balance between the data misfit and the regularization term in this approach, they 
may introduce tradeoff parameter 𝛽 on the model term and obtain: 

𝒎 = 𝒎( + (𝛽𝑊,*𝑊,)&'𝐴*(𝐴(𝛽𝑊,*𝑊,)&'𝐴* + (𝑊+
*𝑊+)&')&'(𝒅!"# − 𝐴𝒎()																																								(13) 

or if a tradeoff parameter 𝜆 is instead introduced on the data misfit term we’d have 

𝒎 = 𝒎( + (𝑊,*𝑊,)&'𝐴*(𝐴(𝑊,*𝑊,)&'𝐴* + (𝜆𝑊+
*𝑊+)&')&'(𝒅!"# − 𝐴𝒎()																																								(14) 

All of the discussion so far has been for L2 norms. If instead we wanted to use Lp norms, Farquharson & Oldenburg 
(1998) show that this can be posed in a way that leads to a further iterative procedure involving 𝑊,*𝑅𝑊, where 𝑅 
is a function of the model: R=R(m). 

Farquharson, C. G and Oldenburg, D. W, 1998, Non-linear inversion using general measures of data misfit and 
model structure, Geophysical Journal International, 134(1), 213–227. 

 

Conclusion: 

You can do most things in the data space formulation, including incorporation of a regularization trade-off 
parameter, and general Lp norms, but it only works if your regularization operator is diagonal. 
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