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SUMMARY

General, non-sum-of-squares measures can be easily
incorporated in standard minimum-structure, under-
determined inversion algorithms via the iteratively
re-weighted least squares technique. This means the
benefits of minimum-structure, under-determined al-
gorithms – robustness because of the dominance of
minimizing model complexity, minimal influence of
the starting model, and no influence of the model pa-
rameterization – can be retained and yet piece-wise-
constant, blocky models constructed. In addition, the
generalization enables measures of data misfit to be
used that are more robust than a sum-of-squares mea-
sure when the noise in the observations is not Gaus-
sian. The iteratively re-weighted least squares proce-
dure involves a readily-implemented modification of
the normal equations for the minimization of sum-of-
squares measures, and the iterations required by this
procedure can be directly amalgamated with those
already needed because of the inherent non-linearity
of the inverse problems we want to solve. The in-
creased computational cost is not large, varying from
10% more iterations to twice as many iterations.

INTRODUCTION

The geophysical inverse problem is non-unique. Earth
models constructed by inversion procedures must be
consistent with any a priori information as well as re-
produce the observations to an acceptable degree. For
certain environments, the smeared-out, fuzzy features
that are typical of models produced by minimum-
structure algorithms do mimic the character of the
subsurface. However, there are other regions where
piece-wise-constant, blocky models would be a better
representation. Such models can be constructed by
minimizing measures of model structure other than
the traditional sum-of-squares, or l2, measure.

There have been a number of reports of the use
of general measures of model structure in non-linear
minimum-structure inversions: we have previously in-
vestigated their application to the one-dimensional
inversion of time-domain electromagnetic data (Far-
quharson and Oldenburg, 1998); Portniaguine and
Zhdanov (1999) applied a measure called a minimum

support functional to three-dimensional inversions of
gravity and magnetic data; and Oldenburg and Ellis
(1993) used an l1 norm (and linear programming) in
a two-dimensional inversion of magnetotelluric data.

The use of general measures for some linear in-
verse problems has been reported: Oldenburg (1984)
inverted lead isotope data using an l1 norm of the
model’s gradient, and Sacchi and Ulrych (1996) ob-
tained sparse solutions to Radon and Fourier trans-
forms by treating them as inverse problems and mini-
mizing a measure related to the solution’s sparseness.

Certain non-sum-of-squares measures are more
robust measures of misfit when the noise in a data-set
is not Gaussian. Because of this, Gersztenkorn et al.
(1986), for example, solve the one-dimensional seismic
inverse problem using an l1 measure of data misfit.
Robust measures of misfit have also been used in the
processing of magnetotelluric data (see, for example,
Egbert and Booker, 1986)

Here we summarize the iteratively re-weighted
least squares technique for a solution to non-linear
inverse problems that uses general measures of model
structure and data misfit. We illustrate the method
with two-dimensional inversions of a synthetic direct-
current resistivity data-set.

GENERAL MEASURES AND THE
NON-LINEAR INVERSE PROBLEM

Consider the standard minimum-structure approach
to solving an inverse problem which involves finding
the model m that minimizes the objective function:

Φ = φd + β φm, (1)

where φd is a measure of data misfit:

φd = φd(u), (2a)

u = Wd(d
obs − dprd), (2b)

where dobs is the vector of observations, dprd is the
vector of data computed for the model m, and Wd is
a diagonal matrix whose elements are the estimates



of the standard deviations of the noise; where φm is
a measure of the amount of structure in the model:

φm = αsφs(vs) + αxφx(vx) + αzφz(vz), (3a)

vi = Wi(m−m
ref), (3b)

where i = s, x and z for a two-dimensional model,Ws

is a diagonal weighting matrix, Wx and Wz are the
first-order finite-difference operators for the x- and
z-directions, mref is a reference model, and αi are
user-specified coefficients; and where β is the trade-
off parameter. The general form of φd and φi is:

φ(x) =
NX
j=1

ρ(xj). (4)

For a non-linear inverse problem, an iterative
procedure is required in which the linear approxima-
tion of the relationship between the data and model
parameters is used at each iteration. The situation
at the nth iteration is therefore that of finding the
model mn that minimizes

Φn = φnd + βn φnm, (5)

where
φnd = φd(u), (6a)

u = Wd(d
obs − dn−1 − J δm), (6b)

where dn−1 is the vector of data for the model, mn−1,
obtained from the previous iteration, δm = mn −
mn−1, and J is the Jacobian matrix of sensitivities
for the linear approximation:

dn ≈ dn−1 + J δm, (7a)

Jij =
∂di
∂mj

; (7a)

and where

φnm = αsφs(vs) + αxφx(vx) + αzφz(vz), (8a)

vi = Wi(m
n−1 + δm−mref). (8b)

The solution at the nth iteration involves differ-
entiating Φn with respect to the elements of δm and
equating the resulting expressions to zero. Differenti-
ating the general form of the measures (eq. 4) gives

∂φ(x)

∂ δmk
=

NX
j=1

ρ′(xj)
∂ xj
∂ δmk

, (9)
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Figure 1. (a) The example synthetic DC
resistivity data-set, and (b) the two-dimen-
sional model from which it was computed.

that is,
∂φ(x)

∂ δm
= BTq, (10)

where ∂φ/∂ δm =
�
∂φ/∂ δm1, . . . , ∂φ/∂ δmN

�T
,

Bij = ∂xi/∂ δmj , and q =
�
ρ′(x1), . . . , ρ

′(xN)
�T

.
Eq. (10) can be reformulated by introducing a diago-
nal matrix:

R = diag
�
ρ′(x1)/x1, . . . , ρ

′(xN)/xN
	
, (11)

which leads to

∂φ(x)

∂ δm
= BTRx. (12)

For the measure of misfit, φnd , in the objective func-
tion, B is −WdJ, and for the components, φi, of the
measure of model structure, B is Wi. The system of
equations to be solved at each iteration is therefore

h
JTWT

dRdWdJ + βn
3X
i=1

αiW
T
i RiWi

i
δm

= JTWT
dRdWd

�
dobs − dn−1

�
+

βn
3X
i=1

WT
i RiWi

�
mrefi −m

n−1
�
. (13)
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Figure 2. (a) The forward-modelled data,
and (b) the constructed model for the in-
version of the data-set in Figure 1(a) using
Ekblom’s measure with p = 1.

Except for the matrices R, this system of equations
is exactly the same as the normal equations that are
obtained if sum-of-squares measures are used. The
matrices R depend on the model, and so, like the
Jacobian matrix, are updated at each iteration. This
is the iteratively re-weighted least squares procedure.

There are numerous possibilities for the actual
form of the measure used. For example, the lp norm:

‖x‖pp =
NX
j=1

|xj|
p, (14)

(where 1 ≤ p < ∞) results in piece-wise-constant
models and is a robust measure of misfit when p = 1;
the M -measure of Huber (1964):

ρ(x) =

�
x2 |x| ≤ c,
2c|x| − c2 |x| > c,

(15)

(where c is the size of what is considered to be a
small element of the vector) likewise gives piece-wise-
constant models and is a robust measure of misfit; the
perturbed p-norm-like measure of Ekblom (1987):

ρ(x) =
�
x2 + ε2

�p/2
, (16)
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Figure 3. The variation of the misfit and
measure of model structure during the in-
version using Ekblom’s measure with p = 1.

(originally with 1 ≤ p < ∞, but extended to 0 ≤
p < 1 by Zhang et al., 2000), is numerically nicer
than the lp norm (its derivative exists at x = 0); and
the minimum support functional of Last and Kubik
(1983) and Portniaguine and Zhdanov (1999):

ρ(x) =
x2

x2 + ε2
, (17)

which, for small ε, gives a measure proportional to
the number of non-zero elements in the vector. The
elements of the matrix R for the above measures are:

Rii =

�
pγp−2 |xi| ≤ γ,
p|xi|

p−2 |xi| > γ,
(18)

where γ is a small number so that R does not become
singular as xi → 0;

Rii =

�
2, |xi| ≤ c,
2c/|xi|, |xi| > c;

(19)

Rii = p
�
x2i + ε2

�p/2−1
; (20)

and

Rii =
2ε2

x2 + ε2
. (21)

EXAMPLE

Figure 1 shows a two-dimensional conductivity model
and a set of synthetic direct-current resistivity data
(pole-dipole, with N-spacings of 1 to 8, giving 68 data
in total) computed for the model. Gaussian noise of
standard deviation equal to 5% of the value of a da-
tum was added to give the data-set that was inverted.

Figure 2 shows the constructed model and the
forward-modelled data resulting from the inversion of
the data in Figure 1(a) using Ekblom’s measure with
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Figure 4. (a) The forward-modelled data,
and (b) the constructed model for the in-
version of the data-set in Figure 1(a) using
Ekblom’s measure with p = 2.

p = 1 (and ε = 10−4) for the measure of model struc-
ture, and a sum-of-squares measure as the measure
of the misfit (since, by construction, the noise in the
data was Gaussian). A constant value of 10 was used
for the trade-off parameter β. This gave a final misfit
of 68. The changes in the misfit and in the measure
of model structure during the course of the inversion
are shown in Figure 3.

Figure 4 shows the results of using the sum-of-
squares measure as the measure of model structure.
Note the typical smeared-out nature of the conduc-
tive region. Figure 5 shows how the misfit and mea-
sure of model structure varied during this inversion.
The trade-off parameter had a fixed value equal to 13.
The final value of misfit was 66. Comparing Figures 3
and 5 shows that the inversion with Ekblom’s mea-
sure and p = 1 required about 10 iterations to reach
convergence whereas the inversion using the sum-of-
squares measure required about 5 iterations.
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Figure 5. The variation of the misfit and
measure of model structure during the in-
version using Ekblom’s measure with p = 2.
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