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Summary

We present an algorithm for inverting magnetotelluric
data to recover a three-dimensional conductivity model
of the Earth. The algorithm is an iterative, linearised,
minimum-structure procedure within which the solution
of the forward problem, the application of the Jaco-
bian matrix of sensitivities, and the solution of the
matrix equation are all done using sparse matrix-vector
operations. Consequently, the algorithm is extremely
efficient in its use of memory, making three-dimensional
inversions feasible.

Introduction

The magnetotelluric (MT) technique, which uses the
natural variations of the Earth’s magnetic field as its
source, is sensitive to the Earth’s conductivity structure
to greater depths than any electromagnetic technique
using man-made sources. Its classic application is to
the study of the crust and upper mantle. However, the
MT method also plays a significant role in hydrocarbon
exploration when geology is sufficiently complex or of
a certain type that traditional seismic methods fail,
and is playing an ever more important role in mineral
exploration as interest in discovering deeper targets
increases.

The improvements in speed and memory of computers has
now made the three-dimensional inversion of geophysical
electromagnetic data conceivable, and there have been a
number of recent reports of the development of inversion
algorithms for MT data, for example, Newman and Alum-
baugh (2000), Hursán and Zhdanov (2001), Uchida et al.
(2001), Mackie et al. (2001).

Here we present a further algorithm for the three-
dimensional inversion of MT data. Its overall frame-
work is that of a typical iterative, linearised, minimum-
structure inversion procedure, and as such is similar to
other algorithms. However, it differs in many of the de-
tails. It is built upon a forward-modelling procedure that
decomposes the electric field into vector and scalar po-
tentials to avoid problems with the null space of the curl
operator, efficiently solves the matrix equation using a
preconditioned Krylov space method, and can cope with
large conductivity contrasts. The matrix equation at each
iteration of the inversion algorithm is solved using a sim-
ilar Krylov space method, which requires only matrix-
vector products, not the explicit generation and storage
of the inverse of the matrix. As such, only the prod-
uct of the Jacobian matrix (or its transpose) with a vec-
tor is ever needed, and this can be done efficiently using

the forward-modelling solution procedure with a modified
right-hand side. Hence, the whole inversion algorithm in-
volves only sequences of sparse matrix-vector products,
making it very effective for large-scale problems.

Forward modelling

Our forward-modelling procedure is based on that of
Haber et al. (2000a). Those authors concentrated on
controlled sources. Here we summarise the modifications
required for the MT problem, with only brief mention of
the points common to both procedures.

Haber et al. (2000a) decompose the electric field into vec-
tor and scalar potentials:

E = A + ∇φ, (1)

and impose the Coloumb gauge condition:

∇ ·A = 0 (2)

to render the decomposition unique. (See also Everett
and Schultz, 1996; LaBrecque, 1999.) This decomposition
explicitly splits the electric field into a part (A) residing
in the active space of the curl operator, and a part (∇φ)
residing in its null space. Eliminating the H-field from
Maxwell’s two curl equations, and introducing eqs. (1) &
(2) gives

∇2A + iωµ0σ(A +∇φ) = 0, (3)

where ω is the angular frequency, µ0 is the magnetic per-
meability of free space, σ = σ(r) is the electrical conduc-
tivity of our Earth model, i =

√−1, and the quasi-static
assumption and a time-dependence of e−iωt have been as-
sumed. For the purposes of the discussion here, we con-
sider the above equation to be a homogeneous equation:
how the “source” of the MT fields is implemented is dealt
with below. The definition of current density, and the
statement that it is divergence free (again ignoring any
sources) are

J = σ(A +∇φ), (4)

and
∇ · J = 0. (5)

For both the forward and inverse problems, we discre-
tise our Earth model into a rectangular grid of cells with
the conductivity considered to be uniform within each
cell. To obtain a numerical solution, the scalar potential
is approximated by its values at the cell centres, and the
vector potential and current density by their normal com-
ponents at the centres of the cell faces. A system of equa-
tions is obtained by applying a finite volume technique to
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eqs. (3)–(5) (see Haber et al. 2000a). This involves the
harmonic averaging of the conductivities in neighbour-
ing cells. Once this has been done, the components of
the current density can be eliminated from the algebraic
equations, giving

(
L+ iωµ0S iωµ0 S G

DS DS G

)(
A
φ

)
= 0, (6)

where A now represents the vector containing the values
of the components of the vector potential on the mesh,
and φ represents the vector of values of the scalar poten-
tial. In addition, L represents the typical discretisation
of the Laplacian operator, S represents the averaged cell
conductivities, and G and D are the discretisations of the
gradient and divergence operators. The matrix in eq. (6)
is extremely sparse.

We consider two different solution methods for the MT
forward-modelling problem. The first involves express-
ing the electric field as the sum of a primary part as-
sociated with a background model and a secondary part
arising from the difference between the actual model and
the background. Equation (6) then becomes

(
L + iωµ0 S iωµ0 S G

DS DS G

)(
As

φs

)
=

(
−i ωµ0 ∆S Ep
−D∆S Ep

)
,

(7)
where ∆S = S−Sp is the difference between the averaged
conductivities of the actual model and those of the back-
ground, Ep is the primary electric field, and As & φs are
the secondary potentials. The background model can be
anything, although we have only considered horizontally-
layered models. The boundary conditions for this solution
method are that the tangential component of ∇×As, the
normal component of As, and the normal derivative of φs

all vanish on the mesh boundaries.

The second method of solution for the MT problem in-
volves solving eq. (6) directly for the total field. In this
case, the tangential component of ∇×A (that is, the H-
field) and the normal component of J are specified on the
boundaries. These values are computed for the one- or
two-dimensional conductivity model that is appropriate
for each boundary.

The matrix equations in both of the above methods are
solved using a stabalised bi-conjugate gradient algorithm.
This requires only the products of the sparse matrix in
eqs. (6) & (7) with a vector. An incomplete LU decom-
position of the L and DSG blocks is used as a precondi-
tioner.

To finish the forward-modelling process for the MT prob-
lem, the horizontal components of the E- & H-fields are
computed for two different polarisations of the source
field: one for an x-directed H-field at the top of the mesh,
and the other for a y-directed H-field. The components,
Zxx, Zxy, Zyx & Zyy, of the impedance tensor are then
computed from the solution of:

(
Exx Eyx
Exy Eyy

)
=

(
Zxx Zxy
Zyx Zyy

)(
Hx
x Hy

x

Hx
y Hy

y

)
, (8)

where the superscripts indicate the source field polarisa-
tion.

Inversion

The main features of our inversion algorithm – the min-
imisation of a combination of data-misfit and model
complexity, and solution by means of an iterative Gauss-
Newton procedure based on the linearised approximation
of the relationship between the model parameters and
observations – are standard. However, because the
three-dimensional inversion of electromagnetic data
is so computationally intensive, it is critical that the
components of the algorithm are efficiently implemented.
The algorithm used here is the Gauss-Newton algorithm
of Haber et al. (2000b), with the necessary modifications
for inverting MT data.

Our solution to the inverse problem is via the minimisa-
tion of the objective function:

Φ = φd + β φm, (9)

where φd is a measure of data-misfit, φm is a measure
of the amount of structure in the Earth model, and β
is the trade-off or regularisation parameter that balances
the effects of the two terms. The measure of misfit we use
here is the traditional sum-of-squares misfit:

φd =
∥∥Wd

(
dobs − dprd

)∥∥2
, (10)

where dobs is the vector of observations, Wd is a diagonal
matrix whose elements at the reciprocals of the measure-
ment uncertainties, and ‖ · ‖ represents the l2-norm. The
data, dprd, produced by the forward-modelling for a par-
ticular Earth model can be represented by:

dprd = Q(ux,uy), (11)

where ux & uy are the solutions of eq. (7) (or eq. 6) for
the two polarisations of the source field. The operator Q
incorporates both the calculation of the horizontal com-
ponents of the E- & H-fields at each observation location
from the values of the vector and scalar potentials on the
mesh, and the calculation of the impedances (see eq. 8).
The former operation is the same as that of the Q matrix
of Haber et al. (2000b).

The measure of model structure is the typical

φm =
4∑

k=1

αk
∥∥Wk

(
m−mref)∥∥2

, (12)

where W1 is a diagonal matrix and W2, W3 & W4 are
the first order finite-difference matrices in the x-, y- & z-
directions for the mesh, and mref is a reference model.
The vector m contains the parameters describing the
model: the logarithms of the cell conductivities.

At the (n+1)th iteration in the minimisation of the ob-
jective function, the Gauss-Newton method requires the
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solution of:

(
JTWT

d WdJ + βWTW
)
δm =

−JTWT
d Wd

(
dobs− dn

)
− βWTW

(
mn−mref

)
,(13)

where mn is the vector of model parameters from the
preceding iteration, J = J(mn) is the Jacobian matrix of
sensitivities, W is such that WTW =

∑
αkW

T
k Wk, and

δm is the perturbation to be added to mn to give the new
model.

Following Haber et al. (2000b), we solve eq. (13) using
an inexact preconditioned conjugate gradient algorithm.
The preconditioner is the incomplete LU decomposition
of the matrix

(
WTW+0.1 I

)
, where I is the identity ma-

trix. This method of solution requires only the operation
of WTW, J and JT on a vector. These multiplications
(described below for the Jacobian) can be done entirely
with sparse matrix-vector operations.

At present, our inversion algorithm uses the primary-
secondary method of solution for the forward modelling
(see eq. 7). Differentiating eq. (7) with respect to the
model parameters, using the chain rule, and rearranging,
gives

Ã
∂us

∂m
=

∂b

∂m
− ∂(Ãus)

∂m
, (14)

where Ã, us, and b are the matrix, solution vector and
right-hand side of eq. (7). Expressions for the matrices
on the right-hand side of eq. (14) follow directly from the

differentiation of the elements of Ã.

Consider now the Jacobian matrix of sensitivities:

J ≡ ∂dprd

∂m
=

∂

∂m
Q(ux,uy), (15)

=
∂Q

∂usx

∂usx
∂m

+
∂Q

∂usy

∂usy
∂m

. (16)

The matrix ∂Q/∂us is straightforward to determine given
the expressions for the elements of the impedance tensor
in terms of the horizontal E- & H-fields. Hence, the proce-
dure for computing the action of the Jacobian matrix on
a vector is as follows (see also Mackie and Madden, 1993;
Mackie et al., 2001). The vector is first pre-multiplied by
the right-hand side of eq. (14) with b and us for the first
source polarisation. Equation (14) is then solved with this
new right-hand side. This is done using the same proce-
dure as for the forward modelling. The solution is then
pre-multiplied by ∂Q/∂usx. The second term in eq. (16)
is obtained in the same way, but using b and us for the
second polarisation. The action of the transpose of the
Jacobian matrix on a vector is accomplished in an analo-
gous manner.

Once δm has been found at a particular iteration, the new
model is given by mn+1 = mn+γ δm, where γ (0 < γ ≤ 1)
is determined by a line search such that the objective
function is decreased. In the present version of the algo-
rithm, the trade-off parameter β is prescribed by a cooling
schedule.
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Fig. 1: The COMMEMI 3D-1 model of Zhdanov et al (1997) which
was used for the synthetic example in this abstract. Panel (a)
shows a plan view and panel (b) shows a vertical section through
the conductive block. The distances are in kilometres.

Example

We briefly illustrate the abilities of our inversion al-
gorithm with its performance on a simple synthetic
data-set. The real and imaginary parts of all four
elements of the impedance tensor were computed for
three frequencies (0.1, 1 & 10 Hz) at 81 locations over
the COMMEMI 3D-1 model (Zhdanov et al. 1997; see
Fig. 1). The mesh contained 37, 41 & 24 cells in the
x-, y- & z-directions, respectively. Random noise was
added to the computed impedances to give the data-set
that was inverted. The standard deviation of the noise
was 5 % of the magnitude of a datum, or one-half of
the average magnitude of all the off-diagonal elements
of the impedance tensor, whichever was larger. The
off-diagonal impedances for 10 Hz are plotted in Fig. 2.

The inversion took a dozen iterations to reduce the misfit
to 2100. (There were 1296 data.) The forward-modelled
data for the final model are shown in Fig. 3. The fi-
nal model was the typical smeared-out image of the true
model. Both the starting and reference models were ho-
mogeneous halfspaces of 0.01 S/m. The trade-off parame-
ter was specified to decrease exponentially from 1000 to 1.
The dozen iterations required 24 hours running on three
1 GHz Pentium III computers.
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Fig. 2: The real and imaginary parts of the off-diagonal tensor
elements at 10 Hz from the data-set that was inverted in the ex-
ample. The 81 observation locations are shown by the dots. The
rectangles indicate the outline of the conductive block.
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