
ArjunAir: Updating and parallelizing an existing
time domain electromagnetic inversion program

Patrick Belliveau*, Dr. Colin Farquharson, Dr. Ronald Haynes Memorial University of Newfoundland

The Forward Model Improvements Conclusions

References

Improvements

Strike direction

Line direction

Typical 2.5D scenario

Isoparametric quadrilateral
mesh

Arjun Air is a 2.5D airborne
electromagnetic inversion program
developed by CSIRO in partnership
with the AMIRA consortium [4]. It
inverts for a 2D conductivity
distribution. It solves for the along-
strike components of the
secondary electric and magnetic
fields using a nodal finite element
method with isoparametric
quadrilateral elements. The
secondary field Maxwell equations
in the frequency domain are

Breaking the equations into
components and Fourier
transforming with respect to the
along-strike coordinate gives a
system of two PDEs for the along
strike field components

Computing the primary field
The frequency domain primary
electric field is

We need it in the spatial
wavenumber domain. We compute
Fourier transform numerically. E.g.

where, These integrals
were originally computed in ArjunAir
by digital filtering at every mesh
point for every transmitter.
However, depend only on and not
on the across strike coordinates
individually. Compute integral at set
of values and interpolate.

0 100 200 300 400
0

2

4

6

8

10

12

of transmitters

tim
e

(s
)

3 3.5 4 4.5 5 5.5 6 6.5 7
x 105

0

50

100

150

of mesh nodes

ru
nt

im
e

(s
)

Primary field
interpolation speedup

−800 −600 −400 −200 0 200 400 600 800
−400

−200

0

distance (m)

de
pt

h
(m

)

lo
g 10

(σ
)

−3

−2

−1

0

−800 −600 −400 −200 0 200 400 600 800
−400

−200

0

distance (m)

de
pt

h
(m

)

lo
g 10

(σ
)

−3
−2
−1
0
1

We have significantly improved ArjunAir run times through the use of parallel
computing and more efficient sequential algorithms. It makes ArjunAir a more useful
code but inversion results are still too dependent on initial guess. The use of
minimum structure inversion should improve inversion results without sacrificing
speed. A minimum structure inversion code using the ArjunAir forward solver has
been mostly written.

Sources of parallelism

Forward problem overview

Arjun Air solves for the along strike secondary fields at 21 values of
the spatial wavenumber. Solves at different wavenumbers are
independent. We parallelize over wavenumbers.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of nodes

sp
ee

du
p

Small problem
Large problem
Linear speedup

Parallel Computing Paradigms

We used MPI for distributed memory parallelization and OpenMP for
shared memory. All code was written in Fortran.

Solving the finite element equations
Need significant computing resources to solve more than a few
wavenumber domain problems in parallel. However, we can also
look for parallelism and higher performance within each solve. After
the primary field, solving Ax = b is the main bottleneck. We used
the MuMPS [1] and Pardiso [3] sparse direct solvers. Additionally,
wherever possible, we used BLAS and LAPACK routines from the
Intel MKL library to speedup linear algebra computations.

4 6 8 10 12 14
x 105

0

50

100

150

200

250

300

350

of unknowns

tim
e

(s
)

2 4 6 8 10 12
0

2

4

6

8

10

12

of processes/threads

sp
ee

du
p

2 4 6 8 10 12
0

2

4

6

8

10

12

of threads

sp
ee

du
p

Inversion algorithm
ArjunAir's inversion algorithm is a variant of the Levenberg-
Marquardt algorithm. It uses singular value damping to stabilize the
inversion. The singular value decomposition is expensive both to
compute and to store in memory. We formulated the inverse
problem using the standard Levenberg-Marquardt algorithm. At each
iteration it solves the linearized least squares minimization problem

This leads to the system of equations

which we solve using the reference implementations of the LSQR
iterative solver [2].

[1] P. AMESTOY , I. DUFF, J. K OSTER, AND J.-Y. L’E XCELLENT, A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM Journal of Matrix Analysis and
Applications, 23 (2001), pp. 15–41.

[2] C. PAIGE AND M. SAUNDERS, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Transactions on Mathematical Software, 8 (1982), pp. 43–71.

[3] O. SCHENK AND K. GARTNER, Solving unsymmetric sparse systems of linear equations
with PARDISO, Journal of Future Generation Computer Systems, 20 (2004), pp. 475–487.

[4] G. WILSON , A. RAICHE, AND F. SUGENG, 2.5D inversion of airborne electromagnetic
data, Exploration Geophysics, 37 (2006), pp. 363–371.

Top) MuMPS and Pardiso speedup on a large mesh
with only 100 sources. Bottom) Pardiso spee dup
with 362 sources

