Synthetic modelling and joint inversion of seismic and gravity data for overburden stripping in the Athabasca Basin

Mehrdad Darijani¹, Colin G. Farquharson¹,*

¹Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, m.darijani@mun.ca; *cgfarquh@mun.ca

Introduction

Gravity signatures from components of the footprints of Uranium deposits in the Athabasca Basin are masked by the contribution to the measured gravity coming from glacial sediments (overburden). In the research illustrated here, the joint inversion of seismic refraction and gravity data is assessed as a means to estimate the depth of overburden. Once the thickness of the overburden is determined, the contribution to gravity measurements can be accounted for and the gravity data used to look for density anomalies in the sedimentary and basement rocks (Juhoujunti et al., 2012).

Forward modelling

Two models, one with modest topography and one drumlin-shaped, with the same physical properties were made, in which the upper layer is the overburden (v=1600 m/s and d=2 g/cc) and the lower layer is sandstone (v=4000 m/s and d=2.42 g/cc). Models were discretized using a triangular mesh. Seismic first arrival travel time and gravity data were synthesized.

Seismic refraction inversion

Inversions were performed of seismic data using both L2-norm and L1-norm methods (Fig. 1) (Lelievre et al., 2012). Vertical sections have more than 40,000 small triangular cells. Although small cells increase computer run-time, they increase resolution and accuracy. The L2-norm vertical section illustrates a good agreement with the original model. However, the interface between the two layers is not sharp. In contrast, the L1-norm section shows a sharper interface. Fitting between observed and calculated data is good.

Joint inversion

Figure 2 shows a model with representative topography for the Athabasca Basin, and the results of independent inversions. Figure 3 shows the joint inversion results. In comparison to the independent inversions, not only the density model is much improved, but also the interface has been clearly reproduced for both density and seismic velocity vertical sections using L2-norm method. For the joint inversion, two clusters can be seen in Figure 4 which represent the physical properties of upper (S=0.000625 s/m and d=2 g/cc) and lower (S=0.00025 s/m and d=2.42 g/cc) layers.

Conclusion

Seismic first arrival travel time and gravity data were synthesized for two models. After inverting the data, results show that the joint inversion of seismic refraction and gravity data can estimate the depth of overburden better than the independent inversions.

Acknowledgements

The authors would like to thank the sponsors, CMIC, and the NSERC-CRD Programme for financial support and assistance. This is CMIC-NSERC Exploration Footprints Network Contribution 075.

References
