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Introduction

Geological mapping in remote areas or in areas with limited outcrop exposure can be challenging
and expensive. The development of predictive pseudo-geological maps from remote sensing data
can enable an educated guess to be made about the lithological distribution and may present
an avenue by which these challenges can be mitigated. Generation of pseudo geology maps can
be accomplished through the application of computer algorithms designed to cluster or classity
multivariate datasets. In this project self-organizing map algorithms (SOMs) are being investi-
cated as a possible means of multivariate dataset analysis of remote sensing data for lithological
discrimination. Here we present a synthetic study illustrating the capabilities of SOMs.

Self-Organizing Maps Algorithms

SOMs are a class of unsupervised neural network algorithms which use a statistical approach to
cluster multivariate datasets. SOMs were developed by Kohonen (1982), and are designed to
reduce the dimensionality of multivariate data by clustering the data in a 2D computational map
space (i.e. a neural map). This type of algorithm has been applied to a number of different earth
science problems, including analysis of geochemical (Iwashita et al., 2011), and remote sensing
data (Ji, 2000). The implementation of SOMs used in this project, SiroSOM, was developed
specifically for use with geoscience data by Australia’s CSIRO.

Synthetic Model and data

The work flow investigated in this poster is summarised in Fig. 1. The first step was to develop a
synthetic model (Fig. 2). This model consists of six geological units. Each unit has the form of a
simple geological structure, is assigned a general depth from surface, and is assinged five properties
(P1, P2, P3, P4, and ps) associated respectively with five data types (dy, ds, ds, dy, and d5). The
form, depth, and properties of the units are summarised in Table 1. The physical properties ot
geological bodies are not constant and have internal variability. To replicate this variability the
properties set for each unit were treated as the mean of a normal distribution and the value for that
property at any point was allowed to vary in a (Gaussian fashion for a given standard deviation.
A standard deviation of 0.1 was used for the examples discussed here. The relationship between
a property and its associated data, the depth sensitivity and spatial resolution for each of the five
datasets created in this project were based on the behaviour of a specific type of geophysical data
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Figure 2: Synthetic model constructed
for this project.

Figure 1: Work flow for this syn-
thetic study showing the progres-
ston from model building through
analysis of test results.
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Table 1: A summary of the character-
istics of each of the units in the model
produced for this project.

Unit Form Properties Depth
1 Country p1:1_22:6_p131:1 Surface
ROCk P4=4 Pr=
o sil Pr=2po=o Ps=l g o
ps=o ps=11
p1:3 p2:4 p3:2
3 Dvkes Surface
g pa=7 ps=10
4 Alteration p1:4_pé:3_p§:4 Shallow
Halo P4=0 DP5=
. p1=5 p2:2 p3:7
5 Intrusion Dee
ps=4 p5=05 b
§ Intrusion P1=0 p2=1 ps=1I Surface
ps=1 ps=1
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Data-type 1, dy, (Fig. 3b) is analogous to grav-
ity data where p; (Fig. 3a) is density. It is sen-
sitive to units of all depths but has poor spatial
resolution.

Data-type 2, do, (Fig. 3d) is analogous to mag-
netic data where py (Fig. 3c) is magnetic sus-
ceptibility. It is sensitive to shallowly buried
units and has moderate spatial resolution.
Data-type 3, ds, (Fig. 3f) is analogous to
the total count from gamma-ray spectrometry
where p3 )(Fig. 3e) is the total concentration
of K, Th, and U. It is sensitive only to units at
the surface and has good spatial resolution.
Data-type 4, d4, (Fig. 3h) is analogous to seis-
mic traveltime where py (Fig. 3g) is the poros-
ity. It is sensitive to shallow units and has good
spatial resolution.

Data-type 5, d;, (Fig. 3j) is analogous to re-
mote sensing data where p; (Fig. 3j) is reflec-
tivity. It is sensitive only to surface units and
has good spatial resolution.

Once the basic datasets have been produced the datasets which adhere to the spatial resolution
quality of the various datatypes are produced by applying averaging filters. A 3x3 averaging filter
was used for those datasets with good spatial resolution, a 5x5 filter was used for those with mod-
erate spatial resolution, and a 9x9 filter was used for those datasets with poor spatial resolution.
To create dataset which comply with the depth sensitivity criteria the physical properties over
some of the bodies needed to be changed. For data types that could only see surface units the
properties for Units 2, 4, and 5 were replaced by those for Unit 1. For data types which could
only see shallow units the properteis of Unit 5 was replaced by those of Unit 4.
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Figure 3: The distribution of the five properties with added variability, (a)
1, (¢) P, (€) p3, (9) ps, and (i) ps, and their associated basic datasets (b)
di, (d) dy,(f) ds, (h) dy, and (j) d5 which don’t include any smoothing or

depth sensitivity information.

Mesh Size and Shape Tests
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Figure 4: The (). values for each
of the 81 test training runs plot-
ted with respect to the size of the
neural map being trained.
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Figure 5: Topographic errors for
each of the 81 test training runs
plotted with respect to the numbers
of rows and columns wn their re-
spective neural maps. Thin black
lines are contours of maps with

500, 1000, 1500, 2000, 2500, and
3000 cells.

The success of the SOM training process used
in the SiroSOM algorithm is quantitatively de-
termined using the Quantization Error (Q,.) and
Topographic Error (T,). Q. is a measure of how
well the data vectors map into the neural map.
T, is a measure of how well structured the neural
map is after the training process. Ideally, both (),
and T, should be minimized through the training
Process.

FEighty-six test training runs with 3686 input data
were conducted using a range of different mesh
sizes and shapes. For each training run all other
training parameters were kept the same. The ),
and T, values for each trial were recorded.

The results of these tests are summarised in Fig-
ures 4 and 5. Figure 4 shows that an increased
total number of nodes in the neural mesh is ef-
fective in reducing ().. DBased on this result it
is suggested that the minimum number of nodes

in a neural map be 25% of the number of input
data.

Figure 5 shows that T, value is minimized both
by having an increased number of nodes and by
having a rectangular mesh which is taller than it
is long (in this case between 70 and 100 rows and
between 10 and 50 columns). Perfectly square
meshes are to be avoided.

Spatial Resolution and Depth Sensitivity Tests

Sixteen tests were carried out to determine the
effect of the different depth sensitivities and
spatial resolutions inherent to the data types on
the accuracy with which the data points can be
clustered by the SOM process. The first test
was a baseline using only the basic synthetic
data for all five datasets. The next five tests
investigated the effect of depth sensitivity but
progressively switching from the basic datasets
to the depth sensitive datasets (i.e. in test 1
only d; was switched, in test 2 d; and dy were
switched ect.). In a second set of five tests the
effects of spatial resolution were investigated by
switching progressively from the basic datasets
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Figure 6: Accuracy of clustering
for all data points for each of the
16 tests.
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to those that included the spatial resolution filtering. The last set of five tests started with the
depth sensitive datasets and progressively switched to datasets that included both depth sensitivity
and spatial resolution. The SOM process results in each of the data points being assigned to a

cluster. Each cluster was paired to a known unit based on the spatial distribution of the data in
the cluster; this is now the "correct' cluster for that unit. The fraction of the data points which
clustered correctly was determined based on these assignments (Figure 6).
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The results of these tests can also be visualised by plotted the data coloured based on their cluster.
In Fig. 7 the input data and results of the final test (where all datasets met the spatial resolution
and depth sensitivity criteria) are presented showing that much of the mis-clustering is occurring
around the edges of the units.
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Figure 7: The input data (top five panels), with observation location indicated
by black does, and final clustered results (bottom panel) for the final test where
all datasets are consistent with their spatial resolution and depth sensitivity
characteristics

Conclusion

These tests show that choices made in the initialization prior to training are crucial to obtaining
ocood results for training the SOM. However, the numbers of rows and columns in the neural map
need to be chosen carefully. Also, better results will be attained from a rectangular mesh with more
rows than columns. The integration of data complexity through addition of depth sensitivity and
spatial resolution criteria did influence the success of clustering the data. However, even the most
complex scenario attempted led to more than 75% of the data points clustering correctly and was
able to replicate the original model rather well. Further work needs to be done to investigate the
effects of increased intra-unit property variability before this method can be extended to testing
with real data.
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