Three-dimensional inversion of gravity data for blocky models using a minimum-structure algorithm and general measures

Colin G. Farquharson

Inco Innovation Centre, and Department of Earth Sciences, Memorial University of Newfoundland
Acknowledgments

- Voisey’s Bay Nickel Company, and Inco/CVRD, for access to the gravity data over the Ovoid.

- Brian Bengert of VBNC/Inco/CVRD, and Michael Ash of MUN, for their advice and assistance.

- MeshTools3D by Roman Shekhtman of UBC–Geophysical Inversion Facility.

- Funded by IIC/AIF Project at MUN.
Outline

- Motivation.
- Previous work.
- General minimum-structure inversion strategy.
 - General measures.
 - Iterative solution procedure.
 - Measure of model structure.
- Example: 3-D gravity inversion, Voisey’s Bay Ovoid.
- Conclusions.
Outline

• Motivation.

• Previous work.

• General minimum-structure inversion strategy.
 • General measures.
 • Iterative solution procedure.
 • Measure of model structure.

• Example: 3-D gravity inversion, Voisey’s Bay Ovoid.

• Conclusions.
Minimum-structure inversion for sharp interfaces
Outline

● Motivation.

● Previous work.

● General minimum-structure inversion strategy.
 General measures.
 Iterative solution procedure.
 Measure of model structure.

● Example: 3-D gravity inversion, Voisey’s Bay Ovoid.

● Conclusions.
“True” minimum-structure algorithms:

Farquharson & Oldenburg (1998, GJI), 1-D EM;
Portniaguine & Zhdanov (1999, Geophysics), 3-D focusing;
Loke, Acworth & Dahlin (2003, Expl. Geop.), 2-D resistivity;
Farquharson & Oldenburg (2003, SEGJ), 2-D resistivity.

Laterally constrained layered inversions:

Smith et al. (1999, Geophysics), 2-D MT;
Auken & Christiansen (2004, Geophysics), 2-D resistivity;
de Groot-Hedlin & Constable (2004, Geophysics), 2-D MT.
Outline

- Motivation.
- Previous work.
- General minimum-structure inversion strategy.
 - General measures.
 - Iterative solution procedure.
 - Measure of model structure.
- Example: 3-D gravity inversion, Voisey’s Bay Ovoid.
- Conclusions.
General minimum-structure inversion strategy

- Mesh fixed during inversion; fine discretization.
General minimum-structure inversion strategy

- Minimize objective function:

\[\Phi = \phi_d + \beta \phi_m, \]

where \(\phi_d \) is measure of data-misfit,

\[\phi_d = \phi_d(u) \quad u = W_d(d^{obs} - d^{prd}), \]

and \(\phi_m \) is measure of structure in model,

\[\phi_m = \sum_k \alpha_k \phi_k(v_k) \quad v_k = W_k(m - m^{ref}_k). \]
General measures

- A general form for ϕ_d and ϕ_m is:

$$\phi(x) = \sum_{j=1}^{N} \rho(x_j).$$

For example, the l_2-norm: $\rho(x) = x^2$;

the l_p-norm: $\rho(x) = |x|^p$;

Ekblom’s l_p-like measure: $\rho(x) = (x^2 + \epsilon^2)^{p/2}$;

Huber’s M-measure: $\rho(x) = \begin{cases} x^2 & |x| \leq c, \\ 2c|x| - c^2 & |x| > c. \end{cases}$
General measures

12

1 2 6 2 1 = 12
1 4 36 4 1 = 46

0 0 12 0 0 = 12
0 0 144 0 0 = 144
Iterative solution procedure

- Differentiate Φ with respect to model parameters and equate to zero.

Get normal system of equations:

\[
\begin{bmatrix}
G^T W_d^T R_d W_d G + \beta^n \sum_k \alpha_k W_k^T R_k W_k
\end{bmatrix} \delta m
\]

\[
= G^T W_d^T R_d W_d (d^{obs} - d^{n-1}) + \\
\beta^n \sum_k \alpha_k W_k^T R_k W_k (m_k^{ref} - m^{n-1}).
\]

Update R_d and R_k.
Measure of model structure

- Regularization via finite-difference matrices.

Old way:
Measure of model structure

- Regularization via finite-difference matrices.

New way:

\[
\Delta x_i \quad \Delta x_{i+1}
\]

\[
\begin{array}{c|c|c|c}
 & \text{i} & \text{i+1} \\
\hline
\text{j-1} & & & \\
\text{j} & & & \\
\text{j+1} & & & \\
\end{array}
\]

\[
\Delta z_{j-1} \quad \Delta z_j \quad \Delta z_{j+1}
\]
Measure of model structure

- The measure of model structure becomes

\[\phi_m = \sum_k \alpha_k \phi_k(v_k) \quad v_k = W_k(m - m_{ref}), \]

where the summation is now over 14 terms, rather than 4.
Particulars of 3-D gravity inversion program used here

- Finite-difference forward solver.
- Preconditioned CG solver for Gauss-Newton equations.
- Preconditioner is ILU decomposition with approximate Jacobian.
- Sparse matrix-vector products, and solution of forward system.
Outline

- Motivation.
- Previous work.
- General minimum-structure inversion strategy.
 - General measures.
 - Iterative solution procedure.
 - Measure of model structure.
- Example: 3-D gravity inversion, Voisey’s Bay Ovoid.
- Conclusions.
Observed Bouguer anomaly over the Ovoid

- Bouguer anomaly relative to 2.67 g/cm³.
- Regional removal by upward continuation – Mike’s talk.
- 89 data.
- Assumed measurement uncertainties of 0.05 mGal.
Inversions

- Results for three inversion coming up.
 For all inversions . . .

 Mesh: $87 \times 61 \times 54$ cells, each cell $10 \times 10 \times 5$ m.
 Topography incorporated.
 Overburden incorporated via the reference model.
 Same depth weighting as GRAV3D.
 More smoothing in easting direction (relative to northing);
 less smoothing in vertical direction (relative to northing).
Inversions

1. Traditional l_2 measure of model structure:
 - only the usual x, y, z finite differences in ϕ_m.

2. l_1-type measure of model structure:
 - only the usual x, y, z finite differences in ϕ_m;
 - 20 iterations.

3. l_1-type measure of model structure:
 - all diagonal finite differences included in ϕ_m;
 - 20 iterations.

- Sum-of-squares, l_2 data misfit used in all inversions.
 (Final misfits for the three inversions: 108, 103, 100.)
Inversion 1: l_2
Inversion 1: l_2

Northing = 6243137.5
Inversion 1: l_2
Inversion 2: l_1, no diagonal differences
Inversion 2: l_1, no diagonal differences

Northing = 6243137.5
Inversion 2: l_1, no diagonal differences
Inversion 3: l_1, diagonal differences
Inversion 3: l_1, diagonal differences

Northing = 6243137.5
Inversion 3: l_1, diagonal differences
Inversions
Outline

- Motivation.
- Previous work.
- General minimum-structure inversion strategy.
 - General measures.
 - Iterative solution procedure.
 - Measure of model structure.
- Example: 3-D gravity inversion, Voisey’s Bay Ovoid.
- Conclusions.
Conclusions

- Minimum-structure inversions can be made to produce blocky models by using non-l_2 measures and iterative solution procedures.

- Explicit inclusion of diagonal differences in the measure of model structure allows dipping interfaces to be produced.

 - Computation time is significantly increased for linear inverse problems: not such an onerous increase for an already non-linear problem.

 - Interfaces not quite as sharp as I had hoped – because of CG solver of Gauss-Newton system?