A finite-volume solution to the geophysical electromagnetic forward problem using unstructured grids

Hormoz Jahandari and Colin G. Farquharson

Memorial University
Department of Earth Sciences
St. John's, Newfoundland, Canada

SEG annual meeting, Houston
September 23, 2013
1	Unstructured grids
2	A finite-volume discretization of Maxwell’s equations
3	Example for magnetic dipole sources
4	Example for a long grounded wire source
5	Some accuracy studies
6	Conclusions
Model irregular structures
Unstructured grids

- Topographical features
- Geological interfaces
Unstructured grids

- Local refinement (at observation points, sources, interfaces)
Dual tetrahedral-Voronoï grids

- **Grid generator:** TetGen (Si, 2004)

![Tetrahedral grid](image1)

![Voronoï grid](image2)
Staggered finite-volume schemes

- Magnetic field divergence free
- Easy for implementing boundary conditions
- Satisfies the continuity of tangential E
- Physically meaningful
Staggered finite-volume schemes

Dual tetrahedral-Voronoï grid

Delaunay-Voronoï contours
Maxwell’s equations

- Maxwell’s equations:
 \[\nabla \times E = -i\omega \mu_0 H - i\omega \mu_0 M_p \]
 \[\nabla \times H = \sigma E + J_p \]

Helmholtz equation for electric field

\[\nabla \times \nabla \times E + i\omega \mu_0 \sigma E = -i\omega \mu_0 J_p - i\omega \mu_0 (\nabla \times M_p) \]

- Homogeneous Dirichlet boundary condition:
 \[E = 0 \quad at \ \infty \]
 or
 \[E \cdot \tau = 0 \quad on \ \Gamma \]
General features of the finite volume method

- Naturally supports unstructured grids
- Simple in idea
- Uses the integral form of equations
- Uses the average values of quantities
Integral form of Maxwell’s equations:

\[\oint_{\partial A^D} \mathbf{E} \cdot d\mathbf{l}^D = -i\mu_0\omega \iint_{A^D} \mathbf{H} \cdot d\mathbf{A}^D - i\mu_0\omega \iint_{A^D} \mathbf{M}_p \cdot d\mathbf{A}^D \]

\[\oint_{\partial A^V} \mathbf{H} \cdot d\mathbf{l}^V = \sigma \iint_{A^V} \mathbf{E} \cdot d\mathbf{A}^V + \iint_{A^V} \mathbf{J}_p \cdot d\mathbf{A}^V \]
Discretized form of Maxwell’s equations:

\[
\begin{align*}
W_j^D \sum_{q=1}^{w} E_{i(j,q)} I_{i(j,q)}^D &= -i \mu_0 \omega H_j A_j^D - i \mu_0 \omega M_{pj} A_j^D \\
W_i^V \sum_{k=1}^{w} H_{j(i,k)} I_{j(i,k)}^V &= \sigma E_i A_i^V + J_{pi} A_i^V.
\end{align*}
\]
Discretized Helmholtz equation

Discretized form of Helmholtz equation:

\[
\sum_{k=1}^{W_i^V} \left(\left(\sum_{q=1}^{W_j^D} E_{i(j,q)} I_{i(j,q)}^D \right) \frac{I_{j(i,k)}^V}{A_{j(i,k)}^D} \right) + i \omega \mu_0 \sigma E_i A_i^V
\]

\[
= -i \omega \mu_0 \sum_{k=1}^{W_i^V} M_{p(j,i,k)} \frac{I_{j(i,k)}^V}{A_{j(i,k)}^D} - i \omega \mu_0 J_{p_i}
\]
Decompose E to real and imaginary parts:

$$E = E_{re} + iE_{im}$$

Resulting block matrix equation:

$$
\begin{pmatrix}
A & -B \\
B & A
\end{pmatrix}
\begin{pmatrix}
E_{re} \\
E_{im}
\end{pmatrix}
=
\begin{pmatrix}
S_{im} \\
S_{re}
\end{pmatrix},
$$
Finite-volume discretization

- Sparse direct solver: MUMPS (Amestoy et. al, 2006)
- Interpolation inside tetrahedra: vector basis functions

\[E(x, y, z) = \sum_{i=1}^{6} N_i(x, y, z) E_i, \]

\begin{center}
\includegraphics[width=0.5\textwidth]{tetrahedron.png}
\end{center}
Inclusion of EM sources

Grounded wire:
Inclusion of EM sources

- Point vertical magnetic dipole:
Example 1: magnetic dipole transmitter-receiver pairs

- Graphite cube in brine (physical scale modelling measurements)
- Transmitter-receiver pairs along the x axis at $z = 2 \text{ cm}$
- Dimensions of the cubic graphite: $14 \times 14 \times 14 \text{ cm}$
- $\sigma_{\text{brine}} = 7.3 \text{ S/m} ; \sigma_{\text{prism}} = 63,000 \text{ S/m}$
- Frequencies: $1, 10, 100, 200, 400 \text{ kHz}$
Example 1: magnetic dipole transmitter-receiver pairs

- Grid refined at the sources, observation points and the prism
Example 1: magnetic dipole transmitter-receiver pairs

- Grid refined at the sources, observation points and the prism
Example 1: magnetic dipole transmitter-receiver pairs

- Scattered H-field: (total−free-space)/free-space
- FV (circles) vs PSM (red), IE (orange), and FE (black)
Example 1: magnetic dipole transmitter-receiver pairs

- Scattered H-field: \((\text{total} - \text{free-space}) / \text{free-space}\)
- FV (circles) vs PSM (red), IE (orange), and FE (black)
Example 1: magnetic dipole transmitter-receiver pairs

- Scattered H-field: \((\text{total} - \text{free-space})/\text{free-space}\)
- FV (circles) vs PSM (red), IE (orange), and FE (black)

![Graphs showing In phase and Quadrature responses at 100 kHz](image-url)
Example 1: magnetic dipole transmitter-receiver pairs

- Scattered H-field: (total−free-space)/free-space
- FV (circles) vs PSM (red), IE (orange), and FE (black)
Example 1: magnetic dipole transmitter-receiver pairs

- Scattered H-field: (total−free-space)/free-space
- FV (circles) vs PSM (red), IE (orange), and FE (black)
Example 1: magnetic dipole transmitter-receiver pairs

In phase

Quadrature

In phase

Quadrature

Hormoz Jahandari and Colin G. Farquharson
Example 2: long grounded wire

- 100 m wire along the x axis operating at 3 Hz
- Dimensions of the prism: 120 × 200 × 400 m
- $\sigma_{\text{ground}} = 0.02 \text{ S/m} ; \sigma_{\text{prism}} = 0.2 \text{ S/m}$
- Observation points along the x axis
Example 2: long grounded wire

- Dimensions of the domain: $40 \times 40 \times 40$ km
- Number of tetrahedra: 162,689; number of unknowns: 189,105
Example 2: long grounded wire

- Grid refined at the source, observation points and the prism
- Computation time: 40 s; memory: 4 Gbytes (on Apple Mac Pro; 2.26 GHz Quad-Core Intel Xeon processor)
Example 2: long grounded wire

- Grid refined at the source, observation points and the prism
- Computation time: 40 s; memory: 4 Gbytes (on Apple Mac Pro; 2.26 GHz Quad-Core Intel Xeon processor)
Example 2: long grounded wire

- Without prism (homogeneous halfspace)
- Total field
- FV vs IE (Farquharson and Oldenburg, 2002)

Without prism (homogeneous halfspace)

Total field

FV vs IE (Farquharson and Oldenburg, 2002)

- Circles: IE; in phase; positive
- Black line: FV; in phase; positive
- Crosses: IE; quadrature; negative
- Gray line: FV; quadrature; negative

With and without prism

Total field

FV only

- Black solid line: in phase; with anomaly
- Gray dashed line: in phase; no anomaly
- Gray solid line: quadrature; with anomaly
- Black dashed line: quadrature; no anomaly
Example 1: long grounded wire

- Scattered field
- FV vs IE

In phase

Quadrature

Secondary E_x (V/m)

x (m)
Example 2: long grounded wire

- Horizontal section \((z = -150 \text{ m})\)
- Total electric field (in phase and quadrature)

- Vertical section \((y = 0 \text{ m})\)
- Total electric field (in phase and quadrature)
Example 2: accuracy studies

- Refinement at the observation points
- Exact solutions: solution due to a fine grid
Example 2: accuracy studies

- **Improvement in grid quality**
- **Quality criteria: maximum radius-edge ratio**

![Graph showing grid quality improvement](image-url)

- **In phase**
- **Quadrature**
- **Full line: 8th order**
- **Dashed line: 4th order**
- **Dotted line: 2nd order**

Cumulative error (V/m)

Grid quality

1e−08
1e−07
1e−06
1e−05

1 2
maximum radius-edge ratio
Example 2: accuracy studies

- **Refinement at the line source**
- **Line source divided into equal segments**

![Graph showing cumulative error (V/m) vs. source segments size (m) for wire sources in phase, quadrature, full line: 2nd order, dashed line: 1st order, dotted line: 0.25th order.](image-url)
Conclusions

- A finite-volume technique is used for modelling the total field EM data. This technique uses the staggered tetrahedral-Voronoï grid.
- The aim is making use of the features of unstructured grids for efficient modeling of the subsurface and for local refinements in the grid.
- The Helmholtz equation is discretized and solved using a sparse direct solver (MUMPS).
- The scheme has been tested for two models: one with a long grounded wire source; another one for magnetic source-receiver pairs with large conductivity contrasts.
- For the both examples, the results from the FV scheme are in good agreement with those from the literature.
- Accuracy studies show the relatively higher importance of refinement at the observation points and improvement in grid quality, and relatively lower importance of refinement at the sources.
Acknowledgements

- ACOA
 (Atlantic Canada Opportunities Agency)

- NSERC
 (Natural Sciences and Engineering Research Council of Canada)

- Vale
References

