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3.0 Marine reservoir model 
Based on the North Amethyst oil field, Jeanne d'Arc Basin, offshore Newfoundland
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11a Hydrocarbons present above oil-water contact 

0

25

50

75

100

125

150

175

|E
in
| 
a

n
o

m
a

ly

0 2 4 6 8 10
Offset (km)

Water depth = 120 m

A
vg

. b
u

ri
al

 d
ep

th
 =

 2
41

6 
m

0

25

50

75

100

125

150

175

|E
in
| 
a

n
o

m
a

ly

0 2 4 6 8 10
Offset (km)

A
vg

. b
u

ri
al

 d
ep

th
 =

 1
41

6 
m

0

25

50

75

100

125

150

175

|E
in
| 
a

n
o

m
a

ly

0 2 4 6 8 10
Offset (km)

Water depth = 1000 m

0

25

50

75

100

125

150

175

|E
in
| 
a

n
o

m
a

ly

0 2 4 6 8 10
Offset (km)

0

25

50

75

100

125

150

175

|E
in
| 
a

n
o

m
a

ly

0 2 4 6 8 10
Offset (km)

Water depth = 2000 m

0

25

50

75

100

125

150

175

|E
in
| 
a

n
o

m
a

ly

0 2 4 6 8 10
Offset (km)

11b Hydrocarbons present throughout reservoir interval
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A simplified 3D reservoir model was constructured for the North Amethyst field using resistivity logs and 
seismic horizons. The 3D model simplifies stratigraphy and associated resistivity structure to a reservoir 
embedded within a shale halfspace with an overlying 120 m-thick sea layer and upper air halfspace 
(Figure 9).  

Preliminary 1D modelling suggests that simplification of background structure does not significantly 
modify the frequency-offset field for anomaly detection (0.01–0.1 Hz; offset greater than 5 km), but does 
result in overestimation of anomaly magnitude (Figure 10). 

Simulated 3D CSEM data (Figure 11a, 'True Model') suggests that the North Amethyst reservoir 
modelled here is not a favourable target for detection via the marine CSEM method, likely due to the 
combination of its significant burial depth, limited lateral extent, and location in shallow water.

For increased water depth, decreased burial depth, and/or increased hydrocarbon content, the electric 
field anomaly increases, underscoring the sensitivity of the method to transverse resistivity (resistivity-
thickness product) and its suitability to the deep water environment (Figure 11).
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b) Simplified 1D model (3D analog)
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Figure 9 Unstructured mesh for the 3D North Amethyst reservoir model, where (a) illustrates a cut-out of the mesh for the full model domain, 
(b) illustrates an xy-section through the reservoir interval, and (c) illustrates the meshed reservoir interval in isolation.

Figure 11 Inline horizontal electric field anomaly as a function of offset for variations of the baseline (true) 3D North Amethyst model in terms of 
water depth and reservoir burial depth, for (a) the scenario of true hydrocarbon content, i.e., hydrocarbons above the oil-water contact only, and 
(b) the scenario of the reservoir interval being completely hydrocarbon-filled. Note the change in scale from 0-15% in (a) to 0-200% in (b). The 
source-receiver line, inline with the hydrocarbon trend, is shown inset in the upper left plot of (a). 

Figure 10 Horizontal inline electric field anomalies as a function of frequency and offset for (a) 
the 1D model with detailed stratigraphy derived from resistivity logs, and (b) the 1D model of a 
shale halfspace containing an infinite-extent reservoir.

9a

10The canonical disk model (Constable and Weiss, 2006) is a 3D adaptation of the 1D canonical oil field model inspired by the Girassol oil field located offshore Angola, which was the 
location for the first CSEM field trial by the oil and gas industry (Ellingsrud et al., 2002; Constable, 2010). 

The model consists of a variable-diameter buried disk that is representative of a laterally-terminating, uniform-thickness petroleum reservoir (Figures 4 and 5).

Results demonstrate the edge effects of laterally-finite resistive layers on the CSEM response: for offsets less than the disk diameter, the 3D finite-element solution follows the 1D 
solution for an infinite-extent resistive layer, but for offsets greater than the disk diameter, the 3D solution falls below the 1D resistive layer solution and exhibits the same exponential 
decay as the 1D homogeneous halfspace solution (i.e., no disk, or resistive hydrocarbons, present) in its asymptotic limit (Figure 6).

The 1 km-diameter disk at a burial depth of 1 km is essentially invisible to the CSEM method with less than a 20% difference in amplitude relative to the homogeneous halfspace.

1D modelling can only provide a best-case, upper estimate of the response for a finite-extent target. 
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Figure 4  Schematic of the canonical disk model, which consists of a 
variable-diameter, 100 m-thick, 0.01 S/m (100 ohm-m) disk buried at a depth 
of 1 km within a 1 S/m (1 ohm-m) homogeneous sediment halfspace with an 
overlying 3.3 S/m (0.3 ohm-m) sea halfspace.

Figure 5 (a) xy(depth)- and (b) xz(cross)-sections of the unstructured mesh 
for the 2 km-diameter disk model.

Figure 6 Dipole moment-normalized inline electric field (a) amplitude and 
(b) phase for various disk diameters d. The 1D solutions for an equivalent-
thickness, infinite-extent layer and a homogeneous halfspace (i.e., no 
resistive layer present) are also plotted for comparison. 
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1.0 Canonical disk model 
Uniform-thickness, laterally-finite petroleum reservoir

2.0 Inclusion of seafloor topography
An irregular surface was introduced as the interface between a lower sediment and upper sea halfspace to study the effects of topography on the CSEM response.

Seafloor topography was based on the 'mmal25pm' mesh available from the INRIA Gamma Group 3D mesh research database (Figure 7). This mesh was previously used in the 
seafloor topography model presented by Schwarzbach et al. (2011). 

Results indicate that the CSEM response in the presence of laterally-variable topography, and therefore resistivity, substantially deviates from the CSEM response for a flat seafloor 
model (Figure 8).

To avoid artefacts in interpretation of real CSEM data, geoelectric models should ideally include topography, especially when considering regions of substantial topographic relief. 

Figure 7 Topographic mesh 'mmal25pm', available from the INRIA mesh database, that was used for 
construction of the seafloor topography model.

Figure 8 Dipole moment-normalized amplitudes for the non-vanishing inline electric and magnetic field 
components for (a) an x-profile and (b) a y-profile through the seafloor topography model. The topographic 
profiles are shown in the top panels.The 1D field solutions for a flat seafloor are plotted for comparison, as 
well as the finite-element seafloor topography solution of Schwarzbach et al., (2011; in legend, SBS11).
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The marine CSEM method

Motivation

Methodology

Challenges

Vector-scalar potential problem formulation

The electric field E is decomposed into the vector magnetic potential A and scalar electric potential ϕ to avoid the numerical instability of the electric field formulation at low frequency: 

N1

N1

N2 N3

N2

N3

N4 N4

N6

N5

Generation of unstructured meshes of suitable quality for numerical solution of PDE problems is non-trivial and an area of ongoing research.

Mesh quality is a complex function of mesh geometry, including cell size and shape, and effects the accuracy of the numerical solution in terms of discretization and interpolation 
errors, as well as the conditioning of the stiffness matrix (Shewchuk, 2002; Du et al., 2009; Si, 2015).

Iterative solution methods are implemented instead of direct solution methods because of the lower memory requirements. The disadvantage of iterative methods is that their 
performance is more sensitive to system ill-conditioning.

Figure 3 Tetrahedron with basis function 
associations to edges and nodes illustrated.

The marine CSEM method is a geophysical technique for mapping subsurface resistivity structure 
in the offshore environment through measurement of the electric and magnetic fields arising from 
excitation of the earth by a controlled source.

It serves as an independent yet complementary method to the seismic reflection method for 
hydrocarbon exploration due to the strong dependence of bulk rock resistivity on pore fluid 
content, e.g., conductive seawater versus resistive oil or gas.

Conventional acquisition employs a horizontal electric dipole source which transmits a low-
frequency, broadband EM signal into the earth (Figure 1), where it is modified in amplitude and 
phase via interactions with the earth's electrical structure.

Measurements of the fields at receivers placed at the seafloor can be related back to variations in 
the earth's electrical structure through modelling.

Transmitter
0.01–10 Hz

Receivers

Air (highly resistive)

Seawater (conductive)

Oil, gas, volcanics,
evaporites, carbonates

(resistive)

Background sediments (conductive)

 Figure 1 Illustration of the marine CSEM method. The transmitter is towed close to the seafloor to 
maximize coupling of the electric field to the subsurface. A horizontal electric dipole source excites vertical 
currents transverse to horizontal resistive targets, thereby generating a galvanic perturbation in the electric 
field which may be detected at the seafloor surface. Modified from Constable and Weiss (2006). 

Growing application of the CSEM method has motivated the development and advancement of software for CSEM interpretation and integration.

For arbitrary 2D or 3D earth models, numerical methods, such as the finite-difference or finite-element methods, are required for solution of the CSEM forward problem.

This work contributes to the ongoing development of the 3D CSEM finite-element code of Ansari et al. (2015; also Ansari and Farquharson, 2014), which has had limited 
application to marine sedimentary models and more realistic models in general.

To address the challenges of incorporating realistic structural elements (e.g., finite and irregular subsurface bodies, topographic or straitgraphic surfaces) in a geoelectric model to be 
discretized using unstructured meshes, a suite of models of progressive structural complexity were examined.

The ultimate goal of this work was to synthesize CSEM data for a real-world-based model for practical application, e.g., feasibility studies to assess the utility of CSEM data for 
specific offshore hydrocarbon exploration and development scenarios.

 Figure 2 Discretization using structured rectilinear meshes versus unstructured 
tetrahedral meshes. (a) Structured mesh for an irregular body. (b) Equivalent 
unstructured mesh for the same irregular body. (c) Structured mesh where refinement 
at the centre of the mesh requires small cell dimensions that extend to the boundaries 
of the mesh. (d) Equivalent unstructured mesh where small cells for refinement are 
localized to the centre of the mesh. 

 Finite-element discretization on unstructured meshes

The computational domain is divided or discretized into subdomains (cells, elements).

The finite-element method is readily applied to boundary-conforming unstructured meshes which enable 
more accurate representation of complex structure than rectilinear meshes (compare Figures 2a and 2b), 
as well as locally-restricted cell refinement, i.e., cell dimensions do not propagate through the mesh 
(compare Figures 2c and 2d). The TetGen software package (Si, 2015) was employed in this study for 
unstructured mesh generation.

The vector and scalar potentials are expressed as expansions in a finite number of of vector and scalar 
basis functions associated with the element edges and nodes (Figure 3):

2a 2b

2c 2d
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