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ABSTRACT

A modification of the typical minimum-structure inver-
sion algorithm is presented that generates blocky, piecewise-
constant earth models. Such models are often more consis-
tent with our real or perceived knowledge of the subsurface
than the fuzzy, smeared-out models produced by current
minimum-structure inversions. The modified algorithm uses
l1-typemeasures in the measure of model structure instead of
the traditional sum-of-squares, or l2, measure. An iteratively
reweighted least-squares procedure is used to deal with the
nonlinearity introduced by the non-l2 measure. Also, and of
note here, diagonal finite differences are included in themea-
sure of model structure. This enables dipping interfaces to be
formed. The modified algorithm retains the benefits of the
minimum-structure style of inversion — namely, reliability,
robustness, and minimal artifacts in the constructed model.
Two examples are given: the 2D inversion of synthetic mag-
netotelluric data and the 3D inversion of gravity data from the
Ovoid deposit,Voisey’s Bay, Labrador.

INTRODUCTION

Minimum-structure inversion procedures are ones in which the
model parameters being sought are the values of one or more physi-
cal properties in the cells in a fixed mesh and in which a measure of
the structure in the model is minimized in combination with a mea-
sure of data misfit. The mesh should provide as fine a discretization
of the subsurface as computational resources allow in order not to re-
strict possible models. This style of inversion procedure has proved
successful, especially for geophysical methods of imaging the
earth’s subsurface that involve potential or diffusive fields, namely
gravity, magnetic, electric, and electromagnetic methods �see, for
example, Constable et al., 1987; Smith and Booker, 1988; de Groot-
Hedlin and Constable, 1990; Oldenburg and Li, 1994; Li andOlden-

burg, 1996, 1998�. The models produced have only enough features
to reproduce the observations and have few, if any, artifacts aris-
ing from noise in the observations. Of arguably equal importance,
minimum-structure inversion procedures generally are robust and
reliable.
Traditional implementations of minimum-structure inversion

procedures use a sum-of-squares, or l2, measure of model structure.
This is becauseminimizing such ameasure results in a linear system
to be solved. However, the models produced typically have a
smeared-out, fuzzy character. This can be at odds with the expected
structure of the subsurface, which often comprises �rightly or
wrongly� uniform geologic units separated by sharp, distinct inter-
faces. The purpose of the work presented here is to modify the tradi-
tional minimum-structure inversion procedure to give a technique
that retains the benefits of the traditional method, but that can gener-
atemodels with uniform regions separated by sharp interfaces.
The traditional minimum-structure procedure has been modified

previously for general, non-l2 measures using the iteratively re-
weighted least-squares �IRLS� algorithm. Last and Kubik �1983�
minimize a measure of the total cross-sectional area of anomalous
regions in 2D inversion of gravity data. Portniaguine and Zhdanov
�1999�, for 3D inversion of gravity and magnetic data, minimize a
measure of the total volume within the model in which the physical
property gradient is nonzero. These two approaches favor compact
features and compact regions of property variation.
The size of the physical property jump across an interface is not

inhibited. Farquharson and Oldenburg �1998� minimize an l1 mea-
sure of the vertical derivative of the model in 1D inversion of elec-
tromagnetic data, and Loke et al. �2003� and Farquharson and Old-
enburg �2003� minimize l1 measures of the horizontal and vertical
derivatives in 2D inversion of resistivity data. This is analogous to
the usual implementation ofminimum-structure inversions inwhich
an l2 measure of the spatial derivatives of the model is minimized.
Minimizing an l1 measure of a spatial derivative favors sharp inter-
faces over gradual, smeared-out gradations. Also, the size of the
physical property jump across an interface does impact thismeasure,
in contrast to those used by Last and Kubik �1983� and Portnaiguine
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and Zhdanov �1999�. Ramos et al. �1999�minimize an entropymea-
sure of the vector comprising the absolute values of the spatial finite
differences of themodel. They apply their technique to the 2D inver-
sion of resistivity data aswell as other geophysical data sets. Howev-
er, despite the success of the preceding approaches in producing
piecewise-constant, blocky models, the interfaces in the models are
always either vertical or horizontal: Themethods do not want to pro-
duce dipping interfaces �Auken and Christiansen, 2004�. The work
presented here attempts to remedy this problem.
A minimum-structure inversion procedure that uses l1 measures

for both the measure of model structure and the measure of data
misfit can be solved via linear programming �see, for example,
Dosso and Oldenburg, 1989, for 1D inversion of magnetotelluric
data; Oldenburg andEllis, 1991, for 2D inversion ofmagnetotelluric
data; and van Zon and Roy-Chowdhury, 2006 for 2D and 3D gravity
inversion�. However, the flexibility afforded by the IRLS procedure
to use non-l2 measures other than the l1 measure, and to use different
measures for themodel structure and datamisfit, is preferred here.
Smith et al. �1999� and de Groot-Hedlin and Constable �2004� for

magnetotelluric �MT� data and Auken and Christiansen �2004� for
resistivity data have developed 2D inversion procedures that gener-
ate blocky, pseudolayered models. However, the approach of these
authors has been to parameterize the subsurface in terms of a small
number of cells beneath each observation location, to allow both the
conductivities of the cells and the depths of their horizontal bound-
aries to vary in the inversion and to apply constraints on the lateral
variability of the conductivities and depths of the cell boundaries. In
some respects, these inversion procedures are hybrids of the mini-
mum-structure approach and a parameter estimation approach; a full
minimum-structure approach is of interest here.
The remainder of this paper is arranged as follows. First, the par-

ticulars of the modified minimum-structure inversion procedure are
described, beginning with the general minimum-structure inversion
strategy and continuing with examples of non-l2 measures and their
properties, the iteratively reweighted least-squares procedure for
dealingwith the nonlinearity introduced by non-l2 measures, and the
inclusion of diagonal finite differences in the measure of model
structure for enabling dipping interfaces to be generated. The capa-
bilities of the modified procedure are then illustrated by its applica-
tion to the inversion of a synthetic 2DMT data set and to the 3D in-
version of gravity data from the Ovoid deposit at Voisey’s Bay, La-
brador.

THEORY

General minimum-structure inversion strategy

The typical framework of a minimum-structure inversion proce-
dure is used here. The subsurface is discretized using a fine mesh
comprising uniform cells. The mesh is kept fixed during the inver-
sion, with the values of the physical property �or properties� in the
cells being the model parameters to be determined in the inversion.
The solution strategy is to find the model parameters that minimize
an objective function, which is a combination of a measure of how
well the observations are reproduced and a measure of how compli-
cated themodel is:

� � �d � � �m. �1�

Here,�d is themeasure of datamisfit, having the general form

�d � �d�u� , �2�

u � Wd�dobs� dprd� , �3�

wheredobs is the vector of observations,dprd is the vector of data com-
puted for the vector m, of model parameters, and Wd is a diagonal
matrix whose elements are the reciprocals of the estimates of the
standard deviations of the noise in the observations. Also, �m is a
measure of the amount of structure in themodel, having the form

�m � �
k

�k�k�vk� , �4�

vk � Wk�m � mk
ref� . �5�

The summation in �m is over five terms for the 2D problem consid-
ered here and over 14 terms for the 3D problem. This will be treated
below. The factor� in the objective function is the regularization, or
trade-off, parameter, which controls the relative contributions of the
datamisfit term and themodel complexity term.

General measures

Ageneral form for�d and�k is

��x� � �
j

��xj� , �6�

where xj are the elements of the vector x, which will be u or vk from
above, and the summation is over all elements in the vector. There
are numerous possibilities for the specific form of the measure. One
example is the lp-norm:

�x�p
p � �

j

�xj�p, �7�

of which the traditional sum-of-squares measure, or l2-norm, is a
special case. Other examples are the M-measure of Huber �1964�,
for which

��x� � �x2 �x� � c ,

2c�x� � c2 �x� � c ,
� �8�

where c is the value of x at which the behavior of � changes from
quadratic to linear and the perturbed lp-norm measure of Ekblom
�1987�, for which

��x� � �x2 � �2�p/2, �9�

where � is a small number. This measure is numerically more attrac-
tive than the lp-norm because its derivative exists at x � 0 when
p � 1. Furthermore, Last and Kubik �1983� and Portniaguine and
Zhdanov �1999� use themeasurewith

��x� �
x2

x2 � �2
. �10�

For small �, thismeasure essentially is proportional to the number of
nonzero elements in x and is analogous to the measure of the area or
volume of support of a continuous function. There are innumerable
other possibilities, allowing a measure to be chosen that produces a
model �or data fit� with a specific desirable character. It is also con-
ceivable to construct ameasure function� that is optimal for a partic-
ular situation �Haber and Tenorio, 2003�. Figure 1 illustrates how �
varies for themeasures described above.

K2 Farquharson



The l2-norm traditionally has been used in inverse problems be-
cause its minimization results in a linear system of equations to be
solved and because it is the most appropriate measure of misfit if the
noise in the observations obeys a Gaussian distribution. However,
squaring the elements of a vector in its l2-normmeans that the contri-
butions of large-valued elements to the norm are disproportionately
large.Minimizing an l2-norm of a vector therefore results in a vector
with no large, distinct elements.Whenminimizing amisfit, no single
discrepancy between the forward-modeled and observed data will
be dramatically larger than the others. Outliers will therefore drag
the predicted data toward them and away from the remainder of the
data set. When minimizing a measure of the spatial derivatives in a
model, as is done in most minimum-structure inversions, using an
l2-norm spreads a change in physical property from one region of the
model to another over a number of cells. In other words, an abrupt,
significant change from one cell to its neighbor is ruled out. In con-
trast, large-valued elements of a vector contribute proportionally to
an l1 measure of its size. Consequently, when an l1-type measure of
misfit is minimized, outliers essentially are ignored. Also, when
minimizing an l1 measure of the spatial derivatives in a model,
abrupt changes between regions of uniformphysical property are not
discriminated against and are, in fact, the kind of structure that is
produced naturally.

Iterative solution procedure

Most geophysical inverse problems are nonlinear. The standard
approach for this is used here: establishing a procedure, at each itera-
tion of which a linearized approximation of the inverse problem is
treated. This involves both the linearization of the relationship be-
tween the model parameters and the observed quantities and of the
nonlinearity introduced by the use of non-l2 measures.
The goal at the nth iteration is to find themodelmwhichminimiz-

es the intermediate objective function:

	n � �d
n � � n�m

n . �11�

In this objective function,

�d
n � �d�u� , �12�

u � Wd�dobs� dn�1 � J
 m� , �13�

where dn�1 is the vector of data for the model mn�1 obtained from
the previous iteration, 
 m � mn � mn�1, and J is the Jacobianma-
trix of sensitivities for the linear approximation:

dn 	 dn�1 � J
 m , �14�

Jij �
�di

�mj
. �15�

Also in the intermediate objective function �equation 11�,

�m
n � �

k

�k�k�vk� , �16�

vk � Wk�mn�1 � 
 m � mk
ref� . �17�

There are manyways to choose the trade-off parameter� n; these are
not discussed here.

To minimize 	n, equation 11 is differentiated with respect to the
perturbations of the model parameters, and the resulting derivatives
are equated to zero. �For the specifics of the following summary that
pertain to general measures, see Farquharson and Oldenburg, 1998,
and references therein.�Differentiating the general form of the mea-
sures �equation 6� gives

���x�
�
 mk

� �
j

���xj�
�xj

�
 mk
, �18�

that is,

���x�
�
 m

� BTq , �19�

where �� /�
 m � ��� /�
 m1, . . . ,�� /�
 mN�T, Bij � �xi/�
 mj,
and q � ����x1�, . . . ,���xN��T. Equation 19 can be reformulated by
introducing a diagonalmatrix:

R � diag
���x1�/x1, . . . ,���xN�/xN� , �20�

which leads to

���x�
�
 m

� BTRx . �21�

For the measure of misfit in the intermediate objective function,B is
� WdJ. For the components of the measure of model structure,B is
Wk. For the four examples of measures given in equations 7–10, the
elements of thematrixR are

Rii � �p� p�2 �xi� � � ,

p�xi�p�2 �xi� � � ,
� �22�

where � is a small number so that R does not become singular as
xi→0;

0

1

2

ρ

0 1 2
x

a b,d
c

d
b

e

a,c

Figure 1. The behavior of the function � for variousmeasures: �a� the
l2-norm; �b� the l1-norm; �c� the HuberM-measure with c � 0.5; �d�
the Ekblom measure with p � 1 and � � 0.1; �e� the support mea-
sure of equation 10with � � 0.1.
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Rii � �2, �xi� � c ,

2c/�xi� , �xi� � c;
� �23�

Rii � p�xi
2 � �2�p/2�1; �24�

and

Rii �
2�2

�xi
2 � �2�2

. �25�

The linear system of equations to be solved at each iteration is there-
fore

�JTWd
TRdWdJ � � n�

k

�kWk
TRkWk

 m

� JTWd
TRdWd�dobs� dn�1�

� � n�
k

Wk
TRkWk�mk

ref� mn�1� . �26�

ThematricesR, aswell as the Jacobianmatrix, depend on themodel.
They are updated at each iteration. This technique is known as itera-
tively reweighted least squares �IRLS�.
The examples presented below are for the 2DMT and 3D gravity

inverse problems. For the 2D MT case, the forward modeling was
done with the finite-difference procedure used to obtain the bound-
ary conditions for the 3D program of Farquharson et al. �2002�. The
operation of the Jacobian matrix, or its transpose, on a vector was
done by solving the forward-modeling equations with the appropri-
ate right-hand side �see, for example, Mackie and Madden, 1993;
Rodi andMackie, 2001; Farquharson et al., 2002�. Solution of equa-
tion 26 directly by LU decomposition and solution iteratively by in-
complete LU decomposition preconditioned conjugate gradients
were both implemented. For the 3D gravity case, forward modeling
was done via a finite-difference solution of Poisson’s equation. Al-
though the relationship between observations andmodel parameters
is linear in this case, the operation of what is essentially the Jacobian
matrix, or its transpose, on a vector was computed using the same
procedure as for the 2DMTexample. Equation 26was solved by the
incomplete LU decomposition preconditioned conjugate gradient
method.

Measure of model structure

In traditional minimum-structure inversion algorithms, the mea-
sure of model structure given by equations 4 and 5 would comprise
three terms for a 2Dmodel �four for a 3Dmodel�, one involving a di-
agonal weighting matrix and usually a reference model, and two in-
volving finite differences in the x- and z-directions. The second two
terms are sometimes considered together as the spatial gradient of
themodel.When l1 measures are used in conjunctionwith the two fi-
nite-difference terms, large values of these x- and z-directed differ-
ences become acceptable in the constructed model. This produces
sharp interfaces between essentially uniform regions. However, be-
cause the measure of model structure only explicitly involves finite
differences in the x- and z-directions, irrespective of whether these
differences are considered together as the gradient of the model, the
sharp interfaces are normal only to one or the other of the finite dif-
ferences in themeasure— that is, they are either vertical or horizon-
tal �Farquharson and Oldenburg, 2003; Auken and Christiansen,
2004�. This is not sufficient to represent a general, piecewise-con-
stant distribution of a physical property in the subsurface. The mea-
sure of model structure is therefore amended here in an ad hoc man-
ner to include finite differences in diagonal directions. This encour-
ages the formation of interfaces that are normal to these new diago-
nal directions.The twodiagonal directions for the 2Dcase are shown
in Figure 2. The corresponding measure of model structure in equa-
tion 4 now comprises five terms, withW1 a diagonal weighting ma-
trix,W2 andW3 the usual x and z first-order finite-difference matri-
ces, andW4 andW5 first-order finite-difference operators for diago-
nally up to the right and diagonally down to the right �Figure 2�.
The measure of model structure for the 3D case is expanded in a

similar manner. Here, it is expanded to include 14 terms: the diago-
nal weighting term; the differences in the x-, y-, and z-directions; six
terms for diagonal differences in the xy-, yz-, and xz-planes; and four
terms for diagonal differences directed from the center of a cell
through its vertices. The areas of the cells are taken into account for
the 2D case and the volumes of the cells for the 3D case.
Li and Oldenburg �2000� present a modification to their 2D mini-

mum-structure inversion procedure for resistivity data that incorpo-
rates user-specified preferred dip directions into a typical l2 measure
ofmodel structure. It is unclearwhether their approachwould gener-
ate sharp dipping interfaces if usedwith l1 measures.The straightfor-
ward inclusion of diagonal finite differences as described above is
favored here.

EXAMPLES

Synthetic 2D MT example

AsyntheticMTdata set was generated for the conductivity model
shown in Figure 3. The data comprised the real and imaginary parts
of the E-polarization impedances at the 17 locations shown by the
triangles in Figure 3 and at the three frequencies 3, 10, and 30 Hz.
�Only E-polarization data are included here because this gives a
more dramatic demonstration of the differences between using l2
and l1 measures of model structure.�Gaussian random noise of stan-
dard deviation equal in magnitude to 1% of a datum was added to
make the data set that is to be inverted. The data are shown in Fig-
ure 4. The mesh comprised 80�65 cells and extended from
x � �12 km to x � 12 km and from z � �18 km to z � 11 km
�with the earth-air interface at z � 0�. The central region of the
mesh, extending from x � �5000 m to x � 5000 m and from

i i+1

1j+
j

∆xi ∆xi+1

∆zj
∆zj+1

–1j ∆zj–1

Figure 2. A subsection of the 2D model mesh showing the possible
directions of the finite differences, relative to cell i, j, in the measure
ofmodel structure.

K4 Farquharson



z � 0 to z � 4000 m, comprised 50�40, 200�100 m cells. The
samemeshwas used for the forwardmodeling and the inversions.
In the inversions described below, the l2-norm was used as the

measure of misfit. The trade-off parameter was started at 100, a rela-
tively large value in the sense that if an inversion were performed
with the trade-off parameter fixed at this value, a model would be
produced that had only a small amount of structure and gave data
that substantially underfit the observations. At each iteration, the
trade-off parameterwas halved to give a slow but steady progression
of models with increasing structure and decreasing data misfits.
Once a value of the trade-off parameterwas reached that resulted in a
model with a data misfit close to the target misfit, the trade-off pa-
rameter was kept constant and further iterations were performed un-
til the model and objective function no longer changed. The target
misfit for this example is 102.This is the number of observations and
hence the expectation of the l2 measure of misfit
being used. The data computed for the final mod-
els in the respective inversions are shown in Fig-
ure 4.All inversions started from a homogeneous
half-space of 10�2 S/m. This was used also as the
reference model m1

ref; reference models for k
� 2, . . . ,5 were not included.
Figure 5 shows the model produced using

the usual l2-norm for the measure of model struc-
ture and the x and z first-order finite-difference
terms �specifically, in equation 4, �1 � 0.001,
�2 � �3 � 1, and �4 � �5 � 0�. The conduc-
tive region in thismodel corresponds nicely to the
conductor in the true model in both location and
general shape. However, the conductive zone has
the smeared-out appearance typical of a model
produced by minimizing an l2-norm measure of
model structure.
Figure 6 shows three models produced using

the Ekblom measure of equation 9 with p � 1
and � � 10�4 and with different combinations of
the spatial finite differences. The model in Fig-
ure 6a was generated using only the horizontal
and vertical finite differences �specifically, �1

� 0.001, �2 � �3 � 1, and �4 � �5 � 0�. This
model is piecewise constant, or blocky. However,
the interfaces essentially are either vertical or
horizontal: The cross section of the conductor is
shapedmore like an “L” than a triangle. Figure 6b
shows the model produced when there was equal
emphasis on all four of the finite-difference terms �i.e., �1 � 0.001,
�2 � �3 � 1, and �4 � �5 � 1�. The model contains sharp dip-
ping, horizontal, and vertical interfaces. The center of the triangular
conductor, wheremost of the induced current is flowing, is the domi-
nant feature of the constructedmodel, with the points of the triangles
being less well resolved. Figure 6c shows the resultant model when
the diagonal finite differences were given more importance than the
horizontal and vertical differences �i.e., �1 � 0.001, �2 � �3

� 0.1, and �4 � �5 � 1�. �Setting �2 � �3 � 0 and �4 � �5 � 1
in the current implementation leads to a checkered effect.�Thismod-
el has sharp, dipping interfaces, exactly the kind of features thatwere
not possiblewithout the inclusion of the diagonal differences.
Figure 7 shows the values of data misfit, measure of model struc-

ture, and trade-off parameter as functions of iteration for the four in-
versions described above. The inversion with the l2 model measure
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Figure 3. The 2D model from which the synthetic MT data set was
generated. The triangles indicate the observation locations.
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Figure 4. The synthetic observed data set and the predicted data sets for the example 2D
MT inversions. The error bars indicate the synthetic data, and the lines indicate the data
computed for themodels shown in Figures 5 and 6.
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Figure 5. The model produced using the usual l2 measure of model
structure. The black-and-white outline indicates the location of the
conductivewedge in the truemodel �Figure 3�.
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converged in seven iterations.All of the inversions using the l1 mea-
sure had effectively converged in 25 to 30 iterations.

Field 3D gravity example: Ovoid deposit, Voisey’s Bay,
Labrador

The inversion procedure presented above was applied to the
ground gravity data from over the Ovoid orebody at Voisey’s Bay
�Figure 8�. This is an internationally significant nickel-copper-co-
balt deposit. For a description of its geology, see Naldrett �2000� and
references therein.The gravity data set from theOvoid has been used
by a number of authors to test inversion methodologies �for exam-
ple, Oldenburg et al., 1998; Ash et al., 2006�.
The data set relevant to the Ovoid is shown in Figure 9. It consists

of 89 data points distributed along four lines.The data are in the form
of Bouguer anomaly values �relative to 2.67 g/cm3�. A regional
trend has been removed via upward continuation �Ash, 2007�.
The Ovoid deposit has been drilled extensively. Figure 10 shows

the density model derived from downhole samples. The interpola-
tion of densities between boreholes in this model was done by krig-
ingwithin themain geologic units �Ash, 2007�. There is clearlymore
detail in this model than one could ever expect to infer from the sur-
face gravity data set shown in Figure 9. The main purpose of the fol-
lowing inversions is to illustrate the inversion procedure presented
here, not to produce the best possible model of the Ovoid from the

surface gravity measurements. Nevertheless, the model in Figure 10
is included as a “true model” with which the following inversion re-
sults can be compared and contrasted.

0
1000
2000
3000
4000
5000

z(
m
)

-6000 -4000 -2000 0 2000 4000 6000

a)

0
1000
2000
3000
4000
5000

z(
m
)

-6000 -4000 -2000 0 2000 4000 6000

b)

0
1000
2000
3000
4000
5000

z(
m
)

-6000 -4000 -2000 0 2000 4000 6000
x (m)

c)

-2.5 -2.0 -1.5 -1.0 -0.5

Conductivity (S/m)
0.00316 0.01 0.0316 0.1 0.316

Figure 6. The models produced using an l1 measure of model struc-
ture with three different combinations of spatial differences: �a� just
the usual horizontal and vertical differences; �b� equal contributions
from the horizontal and vertical differences and the two diagonal dif-
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The samemesh was used for all three inversions described below.
It consisted of 87�61�54 cells in the easting, northing, and verti-
cal directions respectively. All of the cells were of the same dimen-
sions: 10�10�5 m. �There were seven additional planes of pad-
ding cells of increasing size in each direction outside this central re-
gion. This is for the finite-difference solution used by the forward
solver.�The overburden was incorporated bymeans of the reference
modelm1

ref: The anomalous density in the cells inm1
ref corresponding

to the overburden was set to that for the overburden ��0.75 g/cm3�,
the anomalous density in the cells inm1

ref below the overburden was
set to that for the background gneiss �0.14 g/cm3�, and the elements
of the diagonal weighting matrixW1 corresponding to the overbur-
den cells were increased by a factor of 100. The other possible refer-
encemodels for k � 2, . . . ,14were not used. Topographywas incor-
porated in the inversions. The normal l2 measure of data misfit was
used for all three inversions. Measurement uncertainties equal to
0.05 mGal were assumed. All inversions started from a homoge-
neous half-space of zero anomalous density.
Figure 11 shows the constructed model from an inversion using

the usual l2 measure ofmodel structure.The coefficients in themodel
measure for the smallest component and for the differences in the
easting, northing, and vertical directions �i.e.,�1 to�4 in equation 4�
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Figure 9. Observed gravity values, in terms of Bouguer anomaly rel-
ative to 2.67 g/cm3, over the Ovoid deposit at Voisey’s Bay. The
discs indicate the locations of the observations.
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Figure 10. The density model of the Ovoid orebody created by krig-
ing the densities of downhole samples: �a� horizontal slice at 32.5 m
elevation, �b� vertical slice at local northing 290 m, �c� a northwest-
southeast vertical slice. The anomalous densities are relative to
2.67 g/cm3. The mesh is the same as that used for the inversions of
the gravity data. The area shown is the same as that in Figure 9. The
fourmain rock types going frommost dense to least aremassive sul-
fide, troctolite, gneiss, and overburden.
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Figure 11. The model produced by a typical inversion of the Ovoid
gravity data set �Figure 9� using an l2 measure ofmodel structure: �a�
horizontal slice at 32.5 m elevation, �b� vertical slice at local north-
ing 290 m, �c� a northwest-southeast vertical slice. The anomalous
densities are relative to 2.67 g/cm3. The area shown is the same as
that in Figure 9.
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were 0.1, 10, 1, and 0.1, respectively. The choice of 10 and one for
the easting and northing directions was to spread out the anomalous
density between the survey lines, thus counteracting the effect of the
much greater separation between observation locations from one
survey line to the next compared to their separation along the lines.
The choice of 0.1 for the vertical direction was to reduce the vertical
extent of the region of anomalous density to an appropriate amount.
The distance weighting of Li and Oldenburg �1998� was also used.
The value of the trade-off parameter� was 10�7, and the value of the
datamisfit for the constructedmodelwas 108.The sections in Figure
11 illustrate the typical fuzzy, smeared-out character of a model cre-
ated using an l2 measure ofmodel structure.
Figure 12 shows the model produced using the Ekblom measure

of equation 9 with p � 1 and � � 10�4 and with only x-, y-, and
z-directed finite differences. The coefficients �1 to �4 in the model
measurewere 0.1, 10, 1, and 0.2, respectively. The trade-off parame-
ter was equal to 5�10�5 throughout the inversion, and the datamis-
fit for the final model was 103.As seen in Figure 12, the model pro-
duced using this l1 measure comprises regions of uniform density
separated by relatively sharp interfaces. However, it is also clear that

the interfaces are all essentially normal to the x-, y-, or z-directions,
making rectangular structures.
Figure 13 shows the model produced when diagonal finite differ-

ences are included in the l1 measure of model structure. For this ex-
ample, the first four coefficients of the model measure were equal to
0.1, 10, 1, and 0.2 as for the preceding example; the remaining 10 co-
efficients, which correspond to the diagonal difference terms, were
all equal to one. The trade-off parameter was equal to 10�5 through-
out the inversion, and the data misfit for the final model was equal to
100. As the sections in Figure 13 show, the model produced using
this measure ofmodel structure also comprises uniform regions sep-
arated by relatively sharp interfaces. However, unlike the model in
Figure 12, the interfaces are now not restricted to being perpendicu-
lar only to the x-, y-, and z-directions; significant dipping and angled
interfaces are present.
Figure 14 shows the values of data misfit and measure of model

structure as functions of iteration for the three inversions described.
The inversion with the l2 model measure essentially required only
one iteration. �The model measure for the constructed model was
equal to 2.5�1010, which is not included in Figure 14.� The inver-
sions using the l1 measure had effectively converged in 20 iterations.
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Figure 12. The model produced using an l1 measure of model struc-
ture, with only x-, y-, and z-directed finite differences: �a� horizontal
slice at 32.5 m elevation, �b� vertical slice at local northing 290 m,
�c� the northwest-southeast vertical slice. �The anomalous densities
are relative to 2.67 g/cm3.�
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Figure 13. The model produced using an l1 measure of model struc-
ture, with diagonal finite differences as well as the usual x-, y-, and
z-directed finite differences: �a� horizontal slice at 32.5 m elevation,
�b� vertical slice at local northing 290 m, �c� the northwest-southeast
vertical slice. �The anomalous densities are relative to 2.67 g/cm3.�
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CONCLUSIONS

Minimum-structure inversion algorithms typically are robust and
reliable, and they producemodelswith just enough complexity to re-
produce the observations. The iteratively reweighted least-squares
procedure can be used to extend the usual implementation to include
measures other than the l2-norm. This allows the use of robust mea-
sures of data misfit and l1 measures of model structure. The latter re-
sults in blocky, piecewise-constant models, which can be more con-
sistent with preconceived notions of the subsurface than the fuzzy,
smeared-outmodels produced using an l2 measure.As demonstrated
here, the explicit inclusion of diagonal finite differences in the l1
measure ofmodel structuremeans that dipping and angled interfaces
can be constructed, not just interfaces normal to the Cartesian coor-
dinate axes, aswas previously the case.
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Figure 14. The progression of data misfit and measure of model
structure for the three inversions of the Ovoid gravity data set with
the usual l2-normmeasure �disks�, the l1 measure with only horizon-
tal and vertical differences �squares�, and the l1 measure with diago-
nal as well as horizontal and vertical differences �triangles�. �The
model measure for the l2-norm inversion was equal to 2.5�1010,
which is not included here.�
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