Joint and constrained inversions in the Skellefte District

Maria Garcia Juanatey1, Peter Lelièvre2, Colin Farquharson3 and Chris Juhlin1

1Uppsala University, Department of Earth Sciences, Uppsala, Sweden
2Memorial University of Newfoundland, Department of Earth Sciences, St. John’s, NL, Canada

Summary

The Skellefte district is a Paleoproterozoic, mainly metavolcanic region in northern Sweden, and one of the richest metallicogenic provinces in the country. Many geologic and geophysical investigations have been performed to help design exploration strategies for targets at depths below 1km. We are focussing on the Kristineberg mining area to the west of the Skellefte District. The area has been subject to several stages of deformation, the lithologies of interest are covered by massive sheet-like intrusions and outcrops are rare. Hence, the geological setting is not yet clearly understood and the existing 2D models carry large uncertainties. We are performing geologically constrained joint inversions using regional gravity, magnetic and magnetotelluric data. Petrophysical information is available to help develop joint coupling approaches but there are still many practical questions regarding how best to integrate the data via inversion.

Data processing

We removed a linear trend from the gravity data, and a regional component from both the gravity and magnetic data following the approach of [2]. We transformed total field magnetic data into magnetic amplitude data (not shown) using a similar approach as [2].

Figure 1: Geological map of the Kristineberg area [1].

Independent inversion

We inverted the gravity and magnetic total field data using the methods of [3] (see Figs. 3 through 5); the magnetic amplitude data using the approach of [4]; and the MT data were inverted using the methods of [5] (see Fig. 6). The recovered magnetic susceptibility models from inversion of total field data (Figs. 4 and 5) and magnetic amplitude data (not shown) displayed minor differences only below the older felsic Västerdalen Intrusion (see Fig. 1) where petrophysical measurements suggest significant levels of reversals. However, the data available in that region do not include radar (see Fig. 2a) and cannot be located vertically within an approximate average flight height, requiring that large uncertainties be assigned. Modelling errors from the assumption of no reversals are expected to be below that uncertainty threshold so we used total field data rather than magnetic amplitude data in our subsequent inversions. The recovered magnetic susceptibility model with default depth weighting (Fig. 4) has material pushed away from the surface, which is inconsistent with knowledge of the geology. Hence, we performed subsequent magnetic inversions with reduced depth weighting (Fig. 5).

Figure 2: (a) Data observation locations, (b) gravity response after regional removal (decimated here), (c) magnetic response after regional removal. Coordinates are in our own system.

Joint inversion

Using the methods of [7], we performed a joint (simultaneous) inversion, encouraging a linear trend consistent with the petrophysical data from the Kristineberg area (Fig. 7). However, that linear trend fails to accommodate higher susceptibility values recovered at depth and the inversion was not able to provide an appropriate result (Fig. 9). To reduce the susceptibility values, the inversion moved deeper material to the surface. Using implicit linear coupling (again, see [7]) showed moderate improvement (Fig. 10). The recovered density models did not change significantly from the independent results so are not shown.

Cooperative inversion with structural coupling

We performed a cooperative (sequential) inversion following the methods of [8]. This approach promotes structural similarity by altering the smoothness weights iteratively from one recovered model to another. We began with the independent gravity and magnetic inversions of each dataset. This cooperative procedure converged well but does not present any significant improvement over the independent results and has generated some spurious small artifacts.

Conclusion and future work

Prior to this work, no attempt had been made to integrate the geophysical and geological data into a 3D Earth model consistent with all available information. For this task, we are considering geologically-constrained joint and cooperative inversion of several different geophysical datasets. Future work will incorporate MT and seismic data into the joint and cooperative inversion strategies. Inversions will incorporate petrophysical information for the Skellefte district (grey), and recovered model values from the independent inversions. The red line shows the linear trend used in the joint inversion with petrophysical coupling (Fig. 9). Panel (a) has log10 scale for susceptibility whereas panel (b) has linear scale. The vertical axis in both panels does not cover all recovered values: some of the lowest susceptibility values are not plotted in (a) and some of the highest values are not plotted in (b).

Figure 3: Magnetic susceptibility model (SI) from joint inversion with explicit linear coupling and reduced depth weighting: (a) top view of 0.005 threshold, (b) and (c) as for Fig. 3.

Figure 7: Petrophysical information available for the Kristineberg area (various colours), all petrophysical information for the Skellefte district (grey), and recovered model values from the independent inversions (black). The red line shows the linear trend used in the joint inversion with petrophysical coupling (Fig. 9). Panel (a) has log10 scale for susceptibility whereas panel (b) has linear scale. The vertical axis in both panels does not cover all recovered values: some of the lowest susceptibility values are not plotted in (a) and some of the highest values are not plotted in (b).

Figure 8: Density versus susceptibility scatter plots for models recovered from various inversions. The red line shows the linear trend used in the joint inversion with petrophysical coupling (Fig. 9). Panel (a) has log10 scale for susceptibility whereas panel (b) has linear scale. The vertical axis in both panels does not cover all recovered values: some of the lowest susceptibility values are not plotted in (a) and some of the highest values are not plotted in (b).

Figure 9: Magnetic susceptibility model (SI) from joint inversion with implicit linear coupling and reduced depth weighting: (a) top view of 0.005 threshold, (b) and (c) as for Fig. 3. The upper colour-scale limits in (b) and (c) have been changed to accentuate the recovered features.

Figure 11: Density model (g/cc) from cooperative inversion: (a) top view of 0.07 threshold, (b) and (c) as for Fig. 3.

References

[6] M. Skipp, D. Skipp, J. Skipp, and Chris Juhlin. Petrophysical information available for the Kristineberg area (various colours), all petrophysical information for the Skellefte district (grey), and recovered model values from the independent inversions. The red line shows the linear trend used in the joint inversion with petrophysical coupling (Fig. 9). Panel (a) has log10 scale for susceptibility whereas panel (b) has linear scale. The vertical axis in both panels does not cover all recovered values: some of the lowest susceptibility values are not plotted in (a) and some of the highest values are not plotted in (b).