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Motivation

• Typical geophysical inversions discretize the Earth into many cells
and seek smoothly varying models.

• In contrast, geologists’ interpretations about the Earth typically
involve contacts between distinct rock units.

• There are benefits to performing fundamentally different
inversions that seek the interfaces between proposed rock
units.

Sharp Interface Volumetric Inversion

• Standard approach: minimization of objective function including
data misfit and smoothness regularization:

Φ(m) = ‖Wd (F [m]− d)‖2 + β ‖Dm‖2

• Typical “minimum structure” inversions use `2-norms
(sum-of-squares) to obtain smooth models.

• Piecewise-constant models, with regions of uniform values
between sharper features, can be recovered using different
smoothness measures:

ψ(x) =
∑

i

ρ(xi) , ρ(xi) =
(
x2

i + ε2
)p/2

• Clustering methods can provide further improvements.

Level Set Parameterization

• An interface (a contact) is parameterized as the 0-level set of a
higher dimensional “level set” function.

• The model values on an underlying mesh are determined by the
level set function ϕ as follows:

ϕ ≥ 0, in the inclusion,
ϕ < 0, in the background,
ϕ = 0, on the interface.

• The interface changes as the level set function evolves to minimize
the objective function.

• The level set method naturally handles topology changes
(merges, separations) without adding algorithmic complexity.

An illustration of the concept of the level set method: the intersection of the 0-level (blue)
with the level set function (red) generates the lower dimensional bodies (grey). Used with
permission from Oleg Alexandrov at the Wikipedia project.

Cross-Well Tomography Example

True Slowness `2 Inversion `1 Inversion `1 & Clustering Level Set

True and recovered models for a cross-well tomography example. The outlines of the true bodies are superimposed in black or white on top of the recovered models. Lines of down-hole sources
and receivers are displayed as black dots. The colour-bars show slowness in s/km. The meshes are 60 m by 100 m.

Spherical Harmonic Parameterization

• In 2D, a polygon representing the outline of a body can be
represented by a control point (xc, zc) and the distance r of the
vertices from that point:

• The information can be expressed as a Fourier series:

r (θ) = r0 +
n∑

k=1

(
ak cos(kθ) + bk sin(kθ)

)

original outline
n = 2
n = 4
n = 6

• Spherical harmonics can be used to extend to 3D.

Two views (top and bottom) of a sphere (a zero-degree spherical harmonic, left), a higher
degree spherical harmonic (middle), and the addition of both (right). The rainbow colour-
scale indicates radial deviation (blue negative, red positive) for the body at right.

• Regularization involves keeping fewer or more high coefficients.

Wireframe Parameterization

• Geological models typically comprise wireframe surfaces
representing geological contacts between rock units.

• A wireframe surface, or section thereof, can be parameterized by its
node coordinates in a Cartesian or spherical system.

A wireframe of tessellated triangles representing an isolated 3D body.

• Geological and geophysical models can be specified using
this same parameterization: they are, in essence, the same
Earth model.

• Regularizing the inverse problem is somewhat complicated for this
parameterization:
• enclosed volume,
• surface area,
• surface curvature.

• Constraints may be required to avoid intersections.
• The wireframe and spherical harmonic parameterization

schemes call for the use of global optimization methods.

Global Optimization

• Particle Swarm Optimization (PSO) simulates the social behaviour
of animals, e.g. a swarm of bees searching for food.

• The particles are aware of their current position, previous best
personal position, and global or group best position; the particles
are moved according to the objective function values at those
positions.

• It is relatively easy to develop hybrid PSO methods for stochastic
interpretation.
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Evolution of the global best PSO solution (black dots, green dot is final solution) plotted
over Bayesian likelihood for a 2-layer MT example.
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