Towards Real Earth Models — Computational Geophysics on Unstructured Tetrahedral Meshes?

Colin Farquharson, Peter Lelièvre, Seyedmasoud Ansari, Hormoz Jahandari

Memorial University of Newfoundland,
St. John’s, Newfoundland & Labrador,
Canada.
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions.
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions.
Courrioux et al. (Tectonophysics, 2001)
Zanchi et al.
(Comps. & Geosci., 2009)
Paradigm/GOCAD (web-site, 2014)
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions.
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes ...

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions.
Unstructured meshes:

→ geological and geophysical models can share the same mesh;
→ they can, in essence, be the same model;
→ a single, unified Earth model.
Constrained inversion ...
Constrained inversion ...
Constrained inversion ...
Constrained inversion ...
Contact surface inversion ...

Sprague & de Kemp (GeoInfo., 2005)
Contact surface inversion ...
Numerical/computational benefits:
Inversion, sensitivity computations (MT):
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions.
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes ...

Disadvantages, difficulties, challenges.

Conclusions.
EM geophysics on unstructured tetrahedral meshes:

Börner et al. (GJI, 2008);
Um et al. (GEOPHYSICS, 2010);
Mukherjee & Everett (GEOPHYSICS, 2011);
Schwarzbach et al. (GJI, 2011);
Puzyrev et al. (GJI, 2013);
Ren et al. (GJI, 2013);
Schwarzbach & Haber (GJI, 2013);
Um et al. (GJI, 2013).

Also ...

➔ $\mathbf{A} - \phi$ decomposition;
➔ linear edge elements & nodal elements;
➔ total field;
➔ magnetic & electric sources.
We E108 02 - Forward Modelling of Geophysical Electromagnetic Data on Unstructured Grids Using a Finite-volume Approach - Jahandari & Farquharson.

- staggered grid finite difference;
- total field;
- magnetic & electric sources;
- \mathbf{E} field; $\mathbf{A} - \phi$ decomposition.
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions.
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges ...

Conclusions.
Unstructured meshes:

→ specialized mesh generation;

e.g., TetGen (Hang Si, http://wias-berlin.de/software/tetgen/)
Unstructured meshes:

→ **specialized** mesh generation;

→ **quality** mesh generation;
Unstructured meshes:

→ *specialized* mesh generation;

→ *quality* mesh generation;

→ *quality* mesh generation *between tessellated surfaces*...
Pellerin et al. (Comps. & Geosci., 2014)
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions.
Outline:

Geological models!

Advantages of unstructured tetrahedral meshes.

EM geophysics on unstructured tetrahedral meshes.

Disadvantages, difficulties, challenges.

Conclusions ...
Towards Real Earth Models — Computational Geophysics on Unstructured Tetrahedral Meshes?

A single, unified Earth model.

Surface and volumetric meshing of Earth models is an active area of research.
Towards Real Earth Models — Computational Geophysics on Unstructured Tetrahedral Meshes!

A single, unified Earth model.

Surface and volumetric meshing of Earth models is an active area of research.