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a b s t r a c t

The concept of topological sensitivity has been successfully employed as an imaging tool to
obtain the correct initial topology and preliminary geometry of hidden obstacles for a vari-
ety of inverse scattering problems. In this paper, we extend these ideas to acoustic scatter-
ing involving transient waveforms and penetrable obstacles. Through a boundary integral
equation framework, we present a derivation of the topological sensitivity for the featured
class of problems and illustrate numerically the utility of the proposed method for preli-
minary geometric reconstruction of penetrable obstacles. For generality, we also cast the
topological sensitivity in the so-called adjoint field setting that is amenable to a generic
computational treatment using, for example, finite element or finite difference methods.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

We consider the propagation of transient acoustic waveforms in the time domain and the inverse scattering problem
of using recorded data to identify the support of penetrable obstacles where the acoustic medium parameters (velocity
and density) differ from those in the background model. In the context of full waveform tomography, non-linear min-
imization-based techniques for solving such inverse problems are intrinsically sensitive to the choice of the initial mod-
el. In particular, many such techniques get ‘‘trapped” in local minima of the featured cost functional when the initial
model differs topologically from the true obstacle configuration. As shown in several recent studies, the topological
derivative provides a preliminary point-probing functional for estimating the number, size, and location of obstacles
from the recorded data and thus is a rational means to establish a topologically-correct initial ‘‘guess” for minimization
purposes.

The idea behind the topological derivative is to probe each sampling point in the region of interest (suspected to contain
the scatterers) and classify it as either part of the background or part of an inclusion, given the parameters of the background
model and those of the inclusion(s). With reference to the cost function used as a basis for solving the inverse problem, this is
done by introducing an infinitesimally small inclusion at a sampling point in the reference (i.e. background) medium and
computing the derivative of the cost function with respect to such a perturbation. Because of the infinitesimal size of the
trial inclusion, the resulting formula for the topological sensitivity, which relies on an asymptotic expansion of the scattered
field for a vanishingly small obstacle, typically takes an explicit form and is inexpensive to compute.

The topological derivative was originally introduced in the doctoral thesis of Schumacher [1] as a computational tool for
structural shape optimization. Sokołowski and _Zochowski [2–4] give the mathematical background underlying the technique
and derive an explicit expression for the topological derivative in linear elasticity. Céa et al. [5] discuss the relationship be-
tween topological and shape optimization in the context of optimal structural design, and demonstrate the methods’ utility
through numerical examples. This work is continued in Garreau et al. [6] who examine the possibilities for combining shape
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and topological optimization. More recently, Novotny et al. [7] expose the relationship between the topological derivative
and shape sensitivity analysis. To preserve the initial topology, they adapt the definition of the topological derivative so that
an existing infinitesimal cavity is expanded, rather than introducing a new void. This work is continued in [8] where the
topological sensitivity is compared with the domain truncation method under various boundary conditions prescribed on
the boundary of an (infinitesimal) impenetrable obstacle. Lewiński and Sokołowski [9] give a comparison of several methods,
including the topological derivative, for estimating the energy change of a system due to the introduction of an infinitesimal
cavity.

Recently, Guzina and Bonnet [10] introduced the idea of using the topological derivative as a preliminary imaging tool in
the context of inverse elastic scattering in the frequency domain. In [11] they introduce two alternative forms of the formula
for the topological sensitivity and compare the effectiveness of the respective computational schemes. In [12,13] the fore-
going inverse scattering developments, limited to the reconstruction of impenetrable defects, are extended to deal with pen-
etrable obstacles in acoustics [12] and elastodynamics [13], again involving time-harmonic waveforms.

To date the authors know of only two papers that discuss the topological derivative in the context of transient (acoustic or
elastic) waveforms [14,15], although [16], which discusses sensitivity analysis for cracks in the time domain is certainly re-
lated. In the context of inverse scattering, performing this type of analysis in the time domain (as opposed to the frequency
domain) is advantageous because in the time domain different phases, such as Rayleigh and compressional waves, can be
separated and analyzed independently. Dominguez et al. [14] (see also [17]) derive time-domain formulas from the existing
frequency-domain results and the Plancherel theorem. They demonstrate the relation between the topological derivative
and time reversal methods for determining the source location [18–20], and discuss the utility of the former technique
for non-destructive evaluation. Bonnet [15] gives a general elastodynamic framework for the topological derivative in the
time domain, including a simplification to the acoustic case. Given the fact that both [14] and [15] deal with the nucleation
of impenetrable obstacles (e.g. voids), the focus of this paper is a generalization in that it (i) extends the application of the
time-domain topological sensitivity to inverse scattering problems in acoustics involving penetrable obstacles (acoustic
inclusions), and (ii) employs the so-called direct formulation [10,11] that has not been previously applied to transient
problems.

The paper is organized as follows. The acoustic scattering problem and its boundary integral formulation are set up in
Sections 2 and 3, respectively, to permit acoustic wave scattering by homogeneous penetrable obstacles with arbitrary den-
sity and compressibility. The necessary framework for the topological derivative is established in the following two Sections
4 and 5 which include the necessary asymptotics of the scattered field caused by a vanishing penetrable obstacle. The paper
concludes with a set of 3D numerical examples relevant to the crosshole, non-linear waveform tomography [21–23] used in
engineering geophysics.

2. Preliminaries

With reference to the active imaging configuration depicted in Fig. 1, our goal is to reconstruct homogeneous acoustic
inclusions whose mass density and wave speed differ from those of the background medium. We define the reference (obsta-
cle-free) medium X either as a homogeneous full-space or half-space, with wave speed c and mass density q. We next embed
an inclusion Btrue � X with boundary Strue, wave speed c�true, and mass density q�true. In this setting, the so-called background
medium surrounding the obstacle is denoted X�true ¼ X n B true. For inverse scattering purposes, we assume that the inclusion
is illuminated with a transient source density, Eðn; tÞ ¼ gðnÞf ðtÞ assumed to be continuous in XE � T, where XE � X is the (fi-
nite) support of g assumed to be such that XE \ Btrue ¼ ; and T ¼ ½0; T� is a closed time interval with T being the maximum
recorded time. We further assume that the response of the system to this excitation (i.e. the acoustic pressure) is recorded
over a measurement surface, Cobs � X. In what follows, this data set will be denoted by Pobs. In situations when f ðtÞ is given

Fig. 1. Assumed geometry of the experiment. The goal is to determine the shape of Btrue.
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by a sequence of pulses, it is assumed that successive pulses do not interfere, i.e. that the recorded signal from one pulse has
‘‘died out” before the next one is set off. The forward problem then consists of solving for the pressure field, P on Cobs � T

given the source function, the acoustic properties of both the background medium and the inclusion, and the geometry of
the latter.

Our goal, on the other hand, is to solve the inverse problem of reconstructing the shape Btrue from knowledge of the data,
Pobs, on Cobs � T, the background density, q, and velocity, c, and the material parameters of the obstacle (q�true, c�true). A stan-
dard approach to this problem is to define a cost function that measures the distance between the observed and estimated
data over the measurement surface; the preferred solution is then the one that minimizes this cost function. We select

J ðX�; b; c; f Þ ¼
Z T

0
ds
Z

Cobs
uðP; Pobs; n; sÞdCn; ð1Þ

as the cost function, where c ¼ c=c�; b ¼ q=q�; P is an estimate of Pobs, computed for a trial obstacle B with properties c� and
q�; X� ¼ X n B; and u is a real-valued non-negative (distance) function, differentiable with respect to its first argument. A
commonly used example of u is

uðP; Pobs; n; sÞ ¼ 1
2

WxðnÞWtðsÞ Pðn; sÞ � Pobsðn; sÞ
��� ���2 ð2Þ

where Wx and Wt are, respectively, the spatial and temporal weighting functions, and Pobs are the observed data [14,15].
With reference to (1), the topological derivative quantifies the sensitivity of J ðXÞ to the introduction of an infinitesimal

inclusion in the reference (i.e. obstacle-free) domain X at a particular location. At those sampling points where the topolog-
ical derivative attains negative values, the introduction of an infinitesimal defect by definition reduces the cost function;
thus the properties of the ‘‘true” acoustic medium X�true [ Btrue (in terms of the wave speed and mass density) are expected
to deviate from the background values at those locations. With reference to a simply-connected open set B � R3 with bound-
ary S we introduce the region B� ¼ x0 þ �B 2 X (with volume �3jBj) as the support of the trial infinitesimal inclusion (assum-
ing �! 0) placed at the sampling point x0 in the reference medium. We assume the boundary of this region, S� ¼ oB�, to be
smooth of class C1. Throughout this paper, it is assumed that the trial material parameters, ðc�; q�Þ of B� are equal to those of
the ‘‘true” inclusion ðc�true; q

�
trueÞ.

We leave the reference shape B of the nucleated inclusion general, and define the topological derivative of the cost func-
tion J ðXÞ, via the expansion

J ðX�� ; b; c; EÞ ¼ J ðX; EÞ þ T ðx0; b; c; EÞhð�Þ þ oðhð�ÞÞ as �! 0; ð3Þ

where X� ¼ X n B�, J ðX; EÞ denotes the value of J for the reference medium (B ¼ ;), and hð�Þ is to be determined. We assume
that

hð�Þ > 0 lim
�!0

hð�Þ ¼ 0; T ðx0; b; c; EÞ <1; ð4Þ

for the topological derivative to be well-defined (see also [13]). The use of the term ‘‘derivative” for T is made by analogy
with the Taylor series, noting that T plays the role of the first non-vanishing term in the Taylor expansion of J ðXÞ. Although
for the time being we assume the background medium to be homogeneous, the derivation easily generalizes to other cases in
which the Green’s function is available. In addition, in Section 5.2 we derive an expression for the topological derivative in
terms of the adjoint field; this formula does not require knowledge of the Green’s function for the background medium.

To facilitate the ensuing developments, we assume that the acoustic pressure response (P) of the system with a trial inclu-
sion due to prescribed excitation (E) can be divided into two parts, namely the free-field, PF , defined as the response of the
reference domain X, and the scattered field, eP�, i.e. the perturbation component that vanishes as �! 0. With reference to the
latter observation, the key step in establishing the formula for T is an expansion of the featured cost functional J with re-
spect to the scattered pressure field eP� instead of � in the limit as �! 0.

To obtain the Taylor expansion of J ðXÞ with respect to eP� in (1) about the obstacle-free configuration (eP � ¼ 0), we sub-
stitute the Taylor expansion

uðP; Pobs; �; �Þ ¼ uðPF ; Pobs; �; �Þ þ ou
oP
ðPF ; Pobs; �; �ÞeP � þ oðeP �Þ as �! 0; ð5Þ

of the cost function u into (1) resulting in

J ðX�� ; b; c; EÞ ¼
Z T

0
dt
Z

Cobs
uðPF ; Pobs; n; tÞ þ ou

oP
ðPF ; Pobs; n; tÞeP � þ oðeP�Þ

� �
dCn as �! 0: ð6Þ

From (6) it is apparent that the topological sensitivity, as defined in (3), can be written as

T ðx0; b; c; EÞ ¼ lim
�!0

1
hð�Þ

Z T

0
dt
Z

Cobs

ou
oP
ðPF ; Pobs; n; tÞeP �ðn; tÞdCn; ð7Þ

where ou
oP can be evaluated explicitly for any given u, assumed to be differentiable with respect to its first argument. For

example the derivative of the least-squares distance function (2) is

ou
oP
ðPF ; Pobs; n; tÞ ¼WxðnÞWtðtÞðPFðn; tÞ � Pobsðn; tÞÞ: ð8Þ
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To evaluate T over a prescribed grid of sampling points xk
o, k ¼ 1;2; . . . K , one would formally have to compute eP� and thus

solve the full 3D scattering problem K times with the infinitesimal defect introduced separately at each sampling point xk
0.

This is not practical, however, so in the sequel we derive an explicit asymptotic expression for eP � as �! 0.

3. Boundary integral formulation of the forward scattering problem

In this section we first state the forward problem as a system of partial differential equations. Following this, we derive
the associated boundary integral equations to facilitate the asymptotic treatment necessary for the evaluation of the topo-
logical derivative (7).

To isolate the time dependence of the acoustic source Eðn; tÞ ¼ gðnÞf ðtÞ, we introduce the auxiliary (total) pressure field, p,
via

Pðn; tÞ ¼ ½f � p�ðn; tÞ; ðn; tÞ 2 ðX� [ BÞ � T: ð9Þ

Here ‘‘�” denotes the Riemann convolution, see (A.1); P is the total pressure field in the inclusion-background system
(X� [ B) due to the prescribed excitation E; and p is the counterpart of P when the excitation used to illuminate the obstacle
is given by Edðn; tÞ ¼ gðnÞdðtÞ where d denotes the Dirac delta function. By the linearity of convolution, we use a similar
decomposition of this field into a free and scattered field as p ¼ pF þ ~p. Additional properties of convolution used throughout
the paper are given in Appendix A. In certain situations, pF can be estimated from PF; this is the so-called deconvolution
problem studied in many fields (see e.g. [24] for acoustic applications in the context of exploration seismology).

The free field pF , generated by an impulsive source, Edðn; tÞ ¼ gðnÞdðtÞ, satisfies the acoustic wave equation

r2pFðn; tÞ � 1
c2

€pFðn; tÞ þ dðtÞgðnÞ ¼ 0; n 2 X; t 2 T ð10Þ

subject to the Sommerfeld radiation condition at infinity. In situations when X is a semi-infinite domain bounded by the pla-
nar surface R (located at n3 ¼ 0), the free field is further assumed to satisfy the boundary condition

apF þ ð1� aÞpF
;n ¼ 0; n 2 R; ð11Þ

where a is either zero or one, i.e. a 2 f0;1g. In this context, a ¼ 0 corresponds to Neumann boundary conditions and a ¼ 1 to
Dirichlet boundary conditions on R. We assume that all fields have a quiescent past, i.e.,

pðn; tÞ ¼ _pðn; tÞ ¼ 0; 8t < 0; n 2 X ð12Þ

where t ¼ 0 is defined as the time when the source is first activated. By virtue of (12), the ensuing derivation and formulas
apply to all t P 0.

With the foregoing definitions, the system of differential equations defining the forward scattering problem due to Ed are

r2~p� 1
c2

€~p ¼ 0; n 2 X�; ð13Þ

r2p� 1
c�2

€p ¼ 0; n 2 B; ð14Þ

a~pþ ð1� aÞ~p;n ¼ 0; n 2 R; ð15Þ
~pþ pF ¼ p; ~p;n þ pF

;n ¼ bp;n; n 2 S; ð16Þ

where S ¼ oB is the boundary of the trial obstacle, and ‘‘�” indicates differentiation in time, see e.g. [25]. For clarity we note
that the normal derivative of p on S with normal n (oriented toward the interior of B) in (15), (16) is given by

p;n ¼ lim
c!0

n � rpðnþ cnÞ; n 2 S; ð17Þ

with analogous expressions applying for the normal derivatives of the component fields pF and ~p. As implied earlier, we re-
quire that all featured fields (p; pF and ~p) satisfy the Sommerfeld radiation condition (written here in terms of the scattered
field)

~p ¼ O
1
R

� �
; ~p;R �

1
c

_~p ¼ o
1
R

� �
; R � jnj ! 1; n 2 X�; ð18Þ

when X is a full-space, with analogous expressions (derived by the method of images) applying to the corresponding half-
space problem. In particular for the latter problem, it is understood that p, pF and ~p satisfy the respective radiation conditions
as jnj ! 1 with n being restricted to n3 > 0, where n3 ¼ 0 is the boundary of the half-space.

Following the development in [12], we next use Green’s theorem to derive an integral representation

ePðx; tÞ ¼ Z
S

~p;nðn; tÞ � Gðn; x; tÞ � ~pðn; tÞ � Hðn; x; tÞ
� �

dSn; x 2 X�; ð19Þ

of the sought scattered field eP in terms of its time-impulsive counterpart ~p over the boundary of the obstacle, S. Here G and H
denote respectively the time-domain acoustic Green’s function and its normal derivative due to the point source dðn� xÞf ðtÞ.

824 A. Malcolm, B. Guzina / Wave Motion 45 (2008) 821–834
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Substituting the boundary conditions on S given in (16) for ~p and ~p;n, and applying Green’s theorem for the second time
yields the Somigliana-type integral representation

ePðx; tÞ ¼ �Z
B
r � ðbrpðn; tÞ � rpFðn; tÞÞ � Gðn; x; tÞ � ðpðn; tÞ � pFðn; tÞÞ � rGðn; x; tÞ
� �

dVn; x 2 X�; ð20Þ

where the ‘‘�” sign comes from the use of an inward-oriented normal n. Note again that the Green’s function used here con-
tains the time-dependence of the source used to illuminate the obstacle. Expanding the divergence term and substituting
(10) for r2pF , (14) for r2p, and using the wave equation to replace r2G, results in the integral expression for the scattered
field

ePðx; tÞ ¼ ð1� bÞ
Z

B
rpðn; tÞ � rGðn; x; tÞf gdVn þ ð1� bc2Þ

Z
B

1
c2 pðn; tÞ � €Gðn; x; tÞ
� �

dVn; x 2 X� n XE; ð21Þ

by virtue of the convolution property (A.4). Note that in arriving at equation (21) we assume that XE \ B ¼ ; which permits
the cancellation of the source term in (10).

4. Acoustic field in the interior of a vanishing obstacle

The idea of topological sensitivity [10,11] is to introduce infinitesimally small obstacles (one at a time) into the reference
medium, X. To this end, we need an estimate of the scattered field, denoted by eP �, from the infinitesimal obstacle B� placed at
a sampling point x0 2 X in the limit as �! 0. Because this obstacle is infinitesimally small, and the location of the observa-
tion point x is assumed to be at a fixed non-zero distance from the sampling point x0 inside the obstacle (resulting in
Gðn; x; t � sÞ attaining only finite values), we replace G with its zero-order Taylor expansion about n ¼ x0 which reduces
(21) to

eP�ðx;tÞ¼ ð1�bÞ
Z

B�

rp�ðn;tÞdVn

� �
�rGðx;x0;tÞþð1�bc2Þ 1

c2

Z
B�

p�ðn;tÞdVn

� �
� €Gðx;x0;tÞþoð�3Þ �!0; x2X�; ð22Þ

which is the time-domain equivalent of formula (16) in [12].
To estimate the pressure field p� inside the scatterer, it is useful to formulate the acoustic transmission problem (13)–(16)

in terms of a pair of boundary integral equations. We denote by jðxÞ the so-called free term [26], where jðxÞ ¼ 1=2 if S� is
smooth at x. Accordingly, the pair of boundary integral equations describing (13)–(16) can be written as

jðxÞePðx; tÞ ¼ jðxÞf ðtÞ � ~p�ðx; tÞ ¼
Z

S�

~p�;nðnÞ � Gðn; x; tÞ � ~p�ðn; tÞ � Hðn; x; tÞ
n o

dSn; x 2 S�; ð23Þ

and

jðxÞf ðtÞ � ~p�ðx; tÞ þ 1
b

Z
S�

~p�;nðn; tÞ � G�ðn; x; tÞ � ~p�ðn; tÞ � H�ðn; x; tÞ
n o

dSn

¼ �jðxÞf ðtÞ � pFðx; tÞ � 1
b

Z
S�

pF
;nðnÞ � G�ðn; x; tÞ � pFðn; tÞ � H�ðn; x; tÞ

n o
dSn; x 2 S� ð24Þ

where G� and H� are the counterparts of G and H for a medium with velocity c� and mass density q�. We note that (23) and
(24), which are written respectively with reference to B� and X�� , are coupled through the interfacial conditions (16). From
(24) we also see that the ‘‘forcing” term for these coupled equations comes from the boundary distribution of the free field, pF

on the right-hand side of the equation.
From the above integral equations written in terms of ~p�, we next derive an expansion of this quantity as �! 0 in terms of

the solution to the associated Laplace transmission problem. This is accomplished by noting that the singular part of the
Green’s function for the acoustic wave equation is given by the Green’s function for the Laplace equation (see [26]). We first
introduce an auxiliary field, q, about which p� is expanded for vanishing � and then show, using (23) and (24), that this field is
indeed the solution of the associated Laplace transmission problem.

To make explicit the dependence on � (the vanishing obstacle size), we introduce the scaled variables

z ¼ x� x0

�
; f ¼ n� x0

�
; d ¼ rpFðx0; tÞ

jrpFðx0; tÞj
; nðnÞ ¼ gðfÞ; ð25Þ

where (as defined earlier) x0 is a point contained in B�. It then follows from the asymptotic expansion of the Green’s function
(see e.g. [26]) that

Gðn; x; tÞ ¼ 1
�

f ðtÞGðf; zÞ þ Oð1Þ as �! 0;

Hðn; x; tÞ ¼ 1
�2 f ðtÞHðf; zÞ þ Oð1Þ as �! 0: ð26Þ

On the basis of the scaling given in (25), the surface measure becomes

A. Malcolm, B. Guzina / Wave Motion 45 (2008) 821–834 825
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dSn ¼ �2 dSf: ð27Þ

We next introduce the auxiliary fields, ~q and qF , so that

~p�ðn; tÞ ¼ �jrpFðx0; tÞj~qðfÞ þ oð�Þ as �! 0; n 2 S�;

pFðn; tÞ ¼ pFðx0; tÞ þ rpFðx0; tÞ � ðn� x0Þ þ oð�Þ ð28Þ
� qFðtÞ þ �jrpFðx0; tÞjf � dþ oð�Þ as �! 0; n 2 S�:

Because qFðtÞ (i.e. the amplitude of the free field at x0) is independent of the spatial coordinates n, it satisfies the Laplace
equation for each time instant, and thus the boundary integral equation

�jðzÞqFðtÞ � 1
b

Z
S

qF
;gðtÞGðf; zÞdSf þ

Z
S

qFðtÞHðf; zÞdSf ¼ 0; z 2 S; ð29Þ

where S ¼ S�j�¼1 as stated previously.
To better understand the ~q field, we substitute (26)–(28) into (23), obtaining

0 ¼ jrpFðx0; tÞj � f ðtÞ �jðzÞ~qðzÞ þ
Z
S

~q;gðfÞGðf; zÞ � ~qðfÞHðf; zÞ
� �

dSf

� �
þ oð1Þ; as �! 0; z 2 S: ð30Þ

Equation (30) holds for every t P 0 if

0 ¼ �jðzÞ~qðzÞ þ
Z
S

~q;gðf; sÞGðf; zÞ � ~qðf; sÞHðf; zÞ
� �

dSf þ oð1Þ as �! 0; z 2 S: ð31Þ

We now apply the same analysis to (24) employing (29) to obtain

jðzÞ~qðzÞ þ 1
b

Z
S

~q;gðfÞGðf; zÞdSf �
Z
S

~qðfÞHðf; zÞdSf ¼ �jðzÞðz � dÞ � 1
b

Z
S

ðg � dÞGðf; zÞdSf

þ
Z
S

ðf � dÞHðf; zÞdSf þ oð1Þ as �! 0; x 2 S: ð32Þ

From the reduced integral equations (31,32) and the fact that G is the Green’s function for the Laplace equation, we find (cf.
(23,24) that q must solve the Laplace transmission problem in R3, namely

r2
f
~q ¼ 0; f 2 R3 n B

r2
f q ¼ 0; f 2 B

~qþ f � d ¼ q; f 2 S

~q;g þ g � d ¼ bq;g; f 2 S:

ð33Þ

On the basis of (28) the total field, p ¼ pF þ ~p, can now be expanded as

p�ðn; tÞ ¼ pFðx0; tÞ þ �jrpFðx0; tÞjðf � dþ ~qðfÞÞ þ oð�Þ ¼ pFðx0; tÞ þ �jrpFðx0; tÞjqðfÞ þ oð�Þ as �! 0; n 2 S�: ð34Þ

Because both p�ðnÞ and qðfðnÞÞ are analytic (due to the fact that the source function Eðn; tÞ is supported outside of B�), the
continuity statement (34), defined on S� ¼ oB�, also holds in B� so that

p�ðn; tÞ ¼ pFðx0; tÞ þ oð1Þ;
rp�ðn; tÞ ¼ jrpFðx0; tÞjrfqðfÞ þ oð1Þ as �! 0; n 2 B�:

ð35Þ

The relationship between p� and pF in (35) allows one to evaluate the second integral in (22) asZ
B�

p�ðn; tÞdVn ¼ �3jBjpFðx0; tÞ þ oð�3Þ as �! 0; ð36Þ

where �3jBj is the volume of B�. The evaluation of the first integral in (22), on the other hand, requires an expression for the
rfq factor appearing in (35). Following [12] we find from (33) that q is linear in d [as given by (25)] so that

qðfÞ � d � gðfÞ; rfqðfÞ � d � rfgðfÞ; ð37Þ

where g satisfies the vector Laplace transmission problem

r2
f
~g ¼ 0; f 2 R3 n B

r2
f g ¼ 0; f 2 B;

~g þ f ¼ g; f 2 S

~g;g þ g ¼ bg;g; f 2 S:

ð38Þ

By virtue of (25), (35) and (37), we arrive at the formula
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Z
B�

rp�ðn; tÞdVn ¼ �3jBjrpFðx0; tÞ � Aþ oð�3Þ as �! 0; ð39Þ

where

A ¼ jBj�1
Z
B

rfg dV f ð40Þ

is a constant tensor, depending only on the shape of B chosen for the evaluation of T and the mass density contrast
(b) between the background and the inclusion. In situations when B is a unit ball, it can be shown from (38) and
(40) that

A ¼ 3
bþ 2

I2; ð41Þ

where I2 is the second-order identity tensor. Note that upon comparison with [12], A is the same as in the frequency domain
case.

On substituting (36)–(40) into (22), we finally obtain

eP�ðx; tÞ ¼ �3jBj ð1� bÞðrpFðx0; tÞ � A � rGðx; x0; tÞ þ ð1� bc2Þ 1
c2

_pFðx0; tÞ � _Gðx; x0; tÞ
� �

; x 2 X�; ð42Þ

which makes use of (A.4) and the extended definition of convolution (A.2) for vector functions.

5. The evaluation of topological sensitivity

In this section we establish two alternative expressions for the topological sensitivity on the basis of (7). The first is a di-
rect approach that relies on the knowledge of the Green’s function for the background medium. The second approach makes
use of the so-called adjoint field, which can be estimated numerically when the complexity of the reference model precludes
the computation of the Green’s function in closed form.

5.1. Direct approach

From (42) we directly evaluate (7), noting that

hð�Þ ¼ jBj�3 ð43Þ

to arrive at the expression

T ðx0; b; c; EÞ ¼
Z T

0
dt
Z

Cobs

ou
oP
ðPFðn; tÞ; Pobsðn; tÞ; n; tÞfð1� bÞðrpFðx0; tÞ � A � rGðn; x0; tÞ

þ ð1� bc2Þ 1
c2

_pFðx0; tÞ � _Gðn; x0; tÞgdCn; ð44Þ

for the topological derivative in terms of the Green’s function for the reference medium X.
In the above expression, we have chosen to embed the prescribed source wavelet, f ðtÞ, in the Green’s function. To arrive at

an expression that is more closely related to the experimental data, we can equivalently put this wavelet in the data,
obtaining

T ðx0; b; c; EÞ ¼
Z T

0
dt
Z

Cobs

ou
oP
ðPFðn; tÞ; Pobsðn; tÞ; n; tÞfð1� bÞðrPFðx0; tÞ � AÞ � rGdðn; x0; tÞ

þ ð1� bc2Þ 1
c2

_PFðx0; tÞ � _Gdðn; x0; tÞgdCn; ð45Þ

where Gd is the Green’s function for an impulsive time source.
From (45) we observe that the so-called ‘‘direct” formula for the topological sensitivity consists of a dipole term (in terms

of rG) and a monopole term (in terms of G), both dependent on the material (acoustic) properties of the inclusion. This is
consistent with formula (23) of [12] for harmonic problems. In this case, however, we incorporate simultaneously the system
response over the range of frequencies contained in the featured wavelet f ðtÞ. We thus expect, as observed in [27], that we
will obtain a higher quality reconstruction due to the use of what amounts to more data, i.e., the signal components at multi-
ple frequencies.

5.2. Adjoint field approach

In most realistic domains, the Green’s function G is not easily determined. To deal with this problem, (44) can alterna-
tively be written in terms of the so-called adjoint field, PH, which can be computed numerically from the recorded data.
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By analogy to the developments in [12,26], the adjoint field can be shown to represent an acoustic solution for the reference,
i.e defect-free domain subject to virtual excitation with the data residual PF � Pobs over the measurement surface Cobs. Sub-
ject to the Sommerfeld radiation condition as applicable, this adjoint field solves the boundary value problem
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Fig. 3. Selected cross-sections (upper panels) and respective distributions of T (lower panels) for Example 1. Solid lines mark the intersection with the true
obstacle. Both plots are made with central frequency f0 ¼ 5.
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r2PHðn; tÞ � 1
c2

€PHðn; tÞ ¼ 0; n 2 X n Cobs

PHðn; tÞ
	 
	 


¼ 0; n 2 Cobs

PH

;n0 ðn; tÞ
h ih i

¼ ou
oP

PFðn; T � tÞ; Pobsðn; T � tÞ; n; T � t
� �

; n 2 Cobs

aPHðn; tÞ þ ð1� aÞPH

;nðn; tÞ ¼ 0; n 2 R;

ð46Þ

where n0 is the unit normal on Cobs, ½½g�� ¼ lims!0gðnþ sn0Þ � gðn� sn0Þ and we have assumed that the measurements are not
made on the boundary of the reference domain, i.e. that Cobs \ R ¼ ;.
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On the basis of (46) where the reference medium (with homogeneous boundary conditions) is subjected to a virtual exci-
tation in terms of the time-reversed data residual ou=oPðPF ; Pobs; �; �Þ, we recognize

PHðx; tÞ :¼
Z

Cobs
dCn

Z T

0
dt0

ou
oP
ðPFðn; T � t0Þ; Pobsðn; T � t0Þ; n; T � t0ÞGdðn; x; t � t0Þ; x 2 X n Cobs; ð47Þ

as the solution for the adjoint field in terms of the time-impulsive Green’s function, Gd, for the reference domain X.
By means of (47), along with several changes of variables and the convolution identity (A.5), we find that (44) can be

rewritten as

T ðx0; b; c; EÞ ¼ ð1� bÞðrPFðx0; tÞ � AÞ � rPHðx0; tÞjt¼T þ ð1� bc2Þ 1
c2

_PFðx0; tÞ � _PHðx0; tÞjt¼T : ð48Þ

While formally established for situations when the reference domain X is an acoustic full-space, the topological sensitivity
formula (48) is general in the sense that it applies to arbitrary (bounded or unbounded) shapes X; in this case the adjoint
field P� satisfying (46) is computed numerically via a suitable (e.g. finite difference) solution technique. For completeness,
we note that (48) can be reduced to the impenetrable obstacle case (see formula (52) in [15]) by setting b ¼ 0.

6. Numerical examples

In what follows, the utility of topological derivative (45) as a tool for preliminary acoustic-wave imaging of penetrable
defects is illustrated through several examples involving transient excitation. For simplicity, the reference shape B of the
nucleating inclusion is taken to be a ball of unit radius, whereby the second-order polarization tensor A featured in the
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‘‘direct” formula (45) for the topological sensitivity (used in the ensuing calculations) is given by (41). We present two exper-
imental configurations: a single penetrable obstacle (btrue ¼ 2; ctrue ¼ 0:5) in an acoustic full-space with wave speed c and
mass density q (Example 1), and two penetrable obstacles (btrue ¼ 1=3; ctrue ¼ 0:8) in the same reference medium (Example
2). The data are simulated using a time-harmonic boundary integral method [28] (specialized to acoustics) over the angular
frequency range xa=c ¼ 0:08� 34 with a step of 0.08, where a is the reference length. The frequency domain data were then
multiplied by a wavelet in the frequency domain and Fourier-transformed to give the temporal signal. This approach avoids
the domain discretization problems inherent to finite-difference or finite-element methods. Unless stated otherwise we use
the raised cosine wavelet given, in the time domain, by

RcðtÞ ¼ sincðf0�tÞ cosðpaf0�tÞ
1� ð2af0�tÞ2

; �t ¼ c
a
ðt � t0Þ; ð49Þ

where t0 denotes temporal onset of excitation, and sincðxÞ ¼ sinðxÞ
px . In what follows, we use a ¼ 0:85 and ct0=a ¼ 8. Fig. 2

shows the location of sources and receivers for the examples considered, where x ¼ n1=a, y ¼ n2=a and z ¼ n3=a. As examined
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earlier, the volume of interest is sequentially ‘‘illuminated” from each source point while monitoring the induced pressure
(Pobs) by all recievers simultaneousy. We have chosen a ‘‘deep cross-hole” configuration to maximize the recording aperture
as suggested in [27].

For Example 1, the obstacle is a ball of radius 0.3a centered at (0.5a, 3a, 0.5a). The inclusion characteristics, btrue ¼ 2 and
ctrue ¼ 0:5, are chosen to mimic an obstacle with zero impedence contrast (defining the impedence as qc) as this is a case in
which the obstacle would be difficult to image with traditional reflection based methods. Fig. 3 shows the T -distribution for
Example 1 [computed assuming b ¼ b true and c ¼ ctrue in (45)] in two sections passing through the centroid of the obstacle:
one parallel to the testing grid, and the other orthogonal to it. As seen from the display, the shape of the inclusion is reason-
ably recovered.

In many applications such as seismology, however, it is not possible to excite and record at very low frequencies such as
those inherently included in the raised cosine wavelet. To investigate whether or not these frequencies are necessary, we
have also tested the topological derivative with the so-called Ricker wavelet, given by

RrðtÞ ¼ 1� 2
pf0�t

2

� �2
( )

e�
pf0

�t
2


 �2

; ð50Þ

which is commonly used in exploration seismology. From Fig. 4 we see that, while the two wavelets have dissimilar fre-
quency contents, their use as a basis for acoustic obstacle reconstruction via the topological derivative results in relatively
similar T -distributions despite the fact that the Ricker wavelet does not contain a DC component. This is encouraging for
possible applications to field data.

As indicated earlier, the results in Fig. 3 are obtained by setting b ¼ btrue and c ¼ ctrue in (45). The results in Fig. 5 show,
however, that a reasonable geometric reconstruction is possible even when the assumed parameters b and c of the nucleat-
ing obstacle are incorrect. In the display, the distribution of topological derivative is shown when both b and c are varied. The
specific values are chosen so that the coefficients ð1� bÞ and ð1� bc2Þ of the two summands in (45) change sign. When the
signs of both terms are correct, the object is identified through pronounced negative values of T as expected. If either sign is
incorrect, on the other hand, the support of the obstacle correlates reasonably well with positive T -values. This indicates that
the topological derivative may also be useful in identifing whether the obstacle is ‘‘hard” or ‘‘soft”; this is discussed further in
[13].

Fig. 6 illustrates the sectional reconstruction of the ellipsoidal defects for Example 2. The two obstacles, with principal
semi-axes ð0:3a;0:3a;0:3aÞ and ð0:4a;0:3a;0:2aÞ, are located respectively at ð0:5a;3a; 0:5aÞ and ð�a;3a;�1:5aÞ. In the exam-
ple, both (penetrable) scatterers are characterized by b true ¼ 0:8 and ctrue ¼ 1=3. These values were chosen as they signify the
(upper) contrast limits in the Earth at seismic exploration scale, e.g. in the modeling of a salt inclusion in a sedimentary se-
quence. For generality, we compute the topological derivative with two different central frequencies, namely f0 ¼ 3 (left pan-
els) and f0 ¼ 5 (right panels). In this case, we see that the reconstruction is arguably better at a lower frequency, most notably
due to the absence of a ‘‘halo” effect characterizing the results for f0 ¼ 5. The latter effect, also observed in earlier time-har-
monic studies [12,13], can be best explained by the spatial oscillations embedded in the acoustic fields PFðx0; �Þ and Gdð�; x0; �Þ
featured in (45). In general, one may expect that the wavelength of oscillations characterizing the spatial distribution of T

Fig. 7. 3D obstacle reconstruction for Example 2 (dual obstacle case). The two surfaces enclose the regions of the sampled space where the topological
derivative takes negative values that are at least 45% of the extreme (negative) value. The shaded regions indicate projections onto coordinate planes where
the true obstacle is outlined for the purpose of comparison.
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would decrease with increasing f0, whereby a pronounced negative ‘‘ridge” would be formed in the neighborhood of the
external surface of the obstacle(s) [13].

To demonstrate that there are no reconstruction artifacts in the space surrounding the two obstacles, Fig. 7 shows the full
3D reconstruction for Example 2. In the display, the volume between the sources and receivers (�2:5 < x < 2, 1 < y < 5 and
�2:5 < z < 2, see also Fig. 2b) is sampled through a uniform grid of 41� 46� 41 points, and the scatterers are reconstructed
using the T ¼ 0:45T min isosurface where T min is the extreme negative value of topological sensitivity computed over the
sampled volume.

7. Conclusions

In this study, we extended the concept of the topological derivative to deal with inverse acoustic scattering in the time
domain involving penetrable obstacles, giving expressions for the topological sensitivity both in terms of the Green’s func-
tion and the adjoint field. These two techniques compliment each other, with the former being useful in cases where the
background medium is well understood, and the latter when closed-form expressions for the Green’s function are not readily
available. Both variants of the formula for the topological sensitivity are derived using the so-called direct approach in which
the key element is an asymptotic approximation of the scattered field due to an infinitesimal inclusion. This expansion is
effected through an approximation of the acoustic field inside the vanishing obstacle by the solution of the associated La-
place transmission problem. With two simple numerical examples, we have shown that this concept allows for the prelimin-
ary recovery of the number, location, and size of penetrable obstacles from transient acoustic waveforms. We have further
examined the influence of the wavelet shape and its central frequency. The extension to penetrable obstacles opens up the
possibility of applying the topological derivative approach to problems in Earth sciences or medical imaging where the prob-
lem of interest is in identifying deviations from a known background medium.
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Appendix A. Some properties of convolution

In this appendix we recall basic properties of convolution that are used throughout the paper. We define the causal or
Riemann convolution [29] as

½g � f �ðn; tÞ ¼
R t

0 f ðn; t � sÞgðn; sÞds; t P 0
0; t < 0;

(
ðA:1Þ

where f and g are any two scalar integrable functions of space and time. For vector functions, we define a convolution-like
integral by

½f � g� ¼
Z t

0
f ðn; t � sÞ � gðn; sÞds ðA:2Þ

where ‘‘�” denotes the usual dot product. It follows directly from the above definitions that the following properties hold

½f � g� ¼ ½g � f � ðA:3Þ

and, assuming a quiescent past,

o½f � g�
ot

¼ ½ _f � g� ¼ ½f � _g�: ðA:4Þ

as well as

f ðtÞ � gðT � tÞ ¼
Z 1

�1
f ðt � sÞgðT � sÞds; ðA:5Þ

where T > 0 is a fixed time.
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[9] T. Lewiński, J. Sokołowski, Energy change due to the appearance of cavities in elastic solids, Int. J. Solids Struct. 40 (2003) 1765–1803.

[10] B.B. Guzina, M. Bonnet, Topological derivative for the inverse scattering of elastic waves, Q. J. Mech. Appl. Math. 57 (2004) 161–179.
[11] M. Bonnet, B.B. Guzina, Sounding of finite solid bodies by way of topological derivative, Int. J. Numer. Meth. Eng. 61 (2004) 2344–2373.
[12] B.B. Guzina, M. Bonnet, Small-inclusion asymptotic for inverse problems in acoustics, Inverse Probl. 22 (2006) 1761–1785.
[13] B.B. Guzina, I. Chikichev, From imaging to material identification: a generalized concept of topological sensitivity, J. Mech. Phys. Solids 55 (2007) 254–

279.
[14] N. Dominguez, V. Gibiat, Y. Esquerre, Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection,

Wave Motion 42 (2005) 31–52.
[15] M. Bonnet, Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Comput. Meth. Appl. Mech. Eng. 195

(2006) 5239–5254.
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