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a b s t r a c t

Grating scattering is a fundamental model in remote sensing, electromagnetics, ocean
acoustics, nondestructive testing, and image reconstruction. In this work, we examine the
problem of detecting the geometric properties of gratings in a two-dimensional acous-
tic medium where the fields are governed by the Helmholtz equation. Building upon our
previous Boundary Perturbation approach (implemented with the Operator Expansions
formalism)we derive a new approachwhich augments thiswith a new ‘‘smoothing’’ mech-
anism. With numerical simulations we demonstrate the enhanced stability and accuracy
of our new approach which further suggests not only a rigorous proof of convergence, but
also a path to generalizing the algorithm to multiple layers, three dimensions, and the full
equations of linear elasticity and Maxwell’s equations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Grating scattering is a fundamentalmodel in remote sensing [1], electromagnetics [2], ocean acoustics [3], nondestructive
testing [4], and image reconstruction [5]. In a recent paper [6] we devised a Boundary Perturbation technique (based upon
the Operator Expansions – OE –[7,8] formalism) for approximating solutions of two related problems in these fields: (1)
the ‘‘forward problem’’ of simulating scattering returns of known incident radiation interacting with a grating of known
structure; and (2) the ‘‘inverse problem’’ of recovering the grating structure given data about both the incident and scattered
radiation. In this work we augment and, as we shall see, vastly improve our approach to (2) with the addition of a
‘‘smoothing’’ mechanism similar in spirit (though not identical to) classical Tikhonov regularization [9].

As with the OEmethod as it was originally designed byMilder [7,10–12] andMilder and Sharp [13,14], our new approach
is spectrally accurate (i.e., has convergence rates faster than anypolynomial order) due to both the analyticity of the scattered
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fields with respect to boundary perturbation, and the optimal choice of spatial basis functions which arise naturally in the
methodology. Our inversion strategy was originally inspired by the work of Nicholls and Taber [15,16] on the recovery of
topography shape under a layer of an ideal fluid (e.g. the ocean) which also uses the explicit nature of the OE formulas to
great effect.

This contribution ismost similar in spirit to thework of Ito and Reitich [17]who considered the sameproblem in a similar,
but not identical, framework. They employed the Field Expansions [18–20] method as the underlying ‘‘forward solver’’, and
used a regularization to realize greater stability. By contrast, we use the Operator Expansions [7,8] formalismwhich not only
has different numerical properties (see, e.g., [21,22]), but also features formulas where the interface deformation appears
explicitly which, as we demonstrate in Sections 4.2 and 4.4, lead to elegant and easily-derived inversion formulas. In addi-
tion, our regularization features a slightly different cost functional to be minimized which leads to a constrained quadratic
optimization problem rather than a more general nonlinear one. While this comes at the cost of greater demands placed
upon the measurement of the far-field data, it is rewarded with a vastly simplified numerical procedure (the ‘‘Null Space
Method’’ of Quadratic Programming [23]) which involves inversion of easily precomputed matrices without line searches,
derivative calculations, conjugate gradient implementations, nonconvexities, etc.

Other approaches to this problem have, of course, been considered and we refer to Ito and Reitich’s [17] paper and
the classical texts of Colton and Kress [24,25,9] for extensive lists. We mention that most of these are based upon
Integral Equation (IE) formulations requiring explicit knowledge of the Green’s function. These methods, like our Boundary
Perturbation approach, are accurate and efficient as they posit surface unknowns and are spectrally accurate. However, we
mention that our current approach is clearly advantaged compared to IE methods in two aspects:

1. for the periodic problemswe consider here IE approachesmust faithfully compute the periodizedGreens function (e.g., via
Ewald summation) which is not only technically challenging, but also introduces an additional discretization parameter
thereby significantly increasing the computational cost. (See the extensive discussion in [26] for a full discussion of these
matters together with suggestions to minimize these issues.) Due to the Fourier basis functions utilized by our scheme,
these quasiperiodic solutions are computed ‘‘by default’’ at no additional cost.

2. as we mentioned above, the impetus for using the Operator Expansions formalism is due to the fact that the boundary
deformations and their powers appear explicitly in this formulation. As with the Field Expansions recursions, the
boundary shape appears in the IE formulation in a rather implicit fashion rendering the identification of formulas akin
to those in Section 4 impossible.

Specific to the simulation of the scattered field from a grating using IEmethods,most recentlywe are aware of thework of
Arens and Grinberg [27] on the ‘‘Complete FactorizationMethod’’ as applied to periodic gratings, the iterative regularization
method of Hettlich [28], and the papers of Bruckner et al. [29–31] on the generalization of the Kirsch–Kress optimization
method to gratings. In this latter work, [29,31] focused upon Integral Equation formulations, while [30] modified these
approaches to the Finite Element framework. We also point out the work of Kress and Tran [32], Akduman, Kress, and
Yapar [33], Lahcene and Gaitan [34], and the bibliographies of these.

The organization of the paper is as follows: in Section 2 we recall the governing equations, including a discussion of
relevant unknowns (Section 2.1). In Section 3 we discuss the forward problem with relevant expansions presented in
Section 3.1 followed by brief numerical results in Section 3.2. In Section 4 we discuss the particulars of the inverse problem
and review our previous Boundary Perturbation approach to this problem, specifically we give a formula for themean depth
in Section 4.1, a linear approximation for the perturbation shape in Sections 4.2 and 4.3, and a nonlinearly corrected version
in Section 4.4. We describe our new, regularized version of this algorithm in Section 5, with the principal ideas for a linear
algorithm in Section 5.1, precise details in Section 5.3 (inspired by the procedures for Constrained Quadratic Programming
which we recall in Section 5.2), and a new regularized nonlinear correction given in Section 5.4. We close with extensive
numerical results in Section 6.

2. Governing equations

In this contributionwe focus on the problem of recovering the interface of a two-dimensional acousticmedium overlying
an impenetrable, periodic solid.Without loss of generality we assume that observationsmay bemade at y = 0, the interface
is ‘‘centered’’ at the (unknown) level y = ḡ < 0, and has (unknown) deviation g(x) such that

ḡ + g(x) < 0,

see Fig. 1.
For simplicity we focus upon the case of a ‘‘sound soft’’ lower material, isonified from above by time-harmonic incident

radiation

ui(x, y) = eiαx−iβy.

It is well known that the scattered field, u = u(x, y), is governed by the Dirichlet problem [2,6]

1u + k2u = 0 y > ḡ + g(x) (2.1a)
∂yu − (iβD)u = 0 y = 0 (2.1b)
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Fig. 1. Plot of one-layer configuration with incident radiation exp(iαx − iβy), bottom interface at y = ḡ + g(x), and observation plane at y = 0.

u(x, ḡ + g(x)) = ζ (x) (2.1c)

u(x + d, y) = eiαdu(x, y), (2.1d)

where

ζ (x) := −ui(x, ḡ + g(x)) = −eiαx−iβ(ḡ+g(x)). (2.1e)

To explain the ‘‘Outgoing Wave Condition’’ (OWC), (2.1b), and introduce important notation, we recall that a solution of
(2.1a) and (2.1d) via separation of variables gives the Rayleigh expansion (see [2, Chapter 1, p. 10])

u(x, y) =

∞
p=−∞

ψ̂peiαpx+iβpy +

∞
p=−∞

ξ̂peiαpx−iβpy, y > ḡ + |g|L∞ ,

where

αp := α +
2πp
d
, βp :=



k2 − α2

p p ∈ U

i

α2
p − k2 p ∉ U,

and the propagating modes are

U := {p ∈ Z | α2
p < k2}.

TheOWCdemands that the ‘‘downwardpropagating’’ coefficients ξ̂p (p ∈ U) andunboundedmodes ξ̂p (p ∉ U) be identically
zero, while the simple calculation

∂yu(x, 0) =

∞
p=−∞

(iβp)ψ̂peiαpx =: (iβD)ψ(x)

defines the order-one Fourier multiplier (iβD). As this is simply a matching condition at y = 0, it is clear that (2.1b) enforces
the OWC transparently.

Remark. We note that the ‘‘sound hard’’ case can be similarly treated and we present some particulars in the Appendix.

2.1. Unknowns

The ideal unknown would be the surface trace

U(x) := u(x, ḡ + g(x)),

as the governing equations, (2.1), are equivalent to the simple equation

U = ζ . (2.2)
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However, with the inverse problem in mind, it becomes apparent that this is unreasonable as U is posed at the very surface
which we do not know. A more promising choice would be

u(x, 0) =: ũ(x) =

∞
p=−∞

ũpeiαpx,

or, possibly, from the Rayleigh expansion (see [2, Chapter 1, p. 10]),

B(x) :=


p∈U

Bpeiαpx.

We note that since we have chosen y = 0 as our ‘‘measuring plane’’ we have ũp = Bp, for p ∈ U. We remark that such
quantities are quite reasonable data to measure, as the ‘‘far field pattern’’ for grating scattering is widely regarded as the set
of ‘‘efficiencies’’

ep :=
βp

β

Bp
2 =

βp

β

ũp
2 , p ∈ U,

which are effectively (but not identically) ũp. For later reference we note that, for a lossless material (Im{β} = 0) there is a
principle of conservation of energy [2]:

p∈U

ep = 1,

so that a widely-accepted diagnostic of convergence (e.g., [2,35]) of a numerical scheme is to measure the ‘‘energy defect’’

δ := 1 −


p∈U

ep. (2.3)

3. The forward problem

Before examining the inverse problemwe describe a Boundary Perturbation (BP)method to recover our chosen unknown
ũ from incident radiation, ui, and known structure, {ḡ, g(x)}. For this we introduce the ‘‘Dirichlet Propagation Operator’’
(DPO) P

P(g)[U(x)] := ũ(x) (3.1)
so that, using (2.2), our governing equation becomes

ũ(x) = P[U] = P[ζ (x)] = P(g)[ζ (x; g)]. (3.2)
Our solution procedure is classical regular perturbation theory: If we set g(x) = εf (x) and suppose (verifiable a posteriori)

that P and ζ depend analytically upon ε, i.e.

P = P(εf ) =

∞
n=0

Pn(f )εn, ζ = ζ (x; εf ) =

∞
n=0

ζn(x)εn,

then we propose an expansion for the unknown

ũ = ũ(x; ε) =

∞
n=0

ũn(x)εn,

and, upon insertion of these forms into (3.2), find a formula for the n-th correction ũn of the form

ũn =

n
m=0

Pn−m[ζm].

From this we obtain a highly accurate approximation of ũ

ũN(x; ε) :=

N
n=0

ũn(x)εn,

which may be summed directly (Taylor summation) or via numerical analytic continuation methods (Padé summation).

Remark. The limitations of ourmethod are largely determined by the validity of the above expansions. This is characterized
by two considerations: first, the smoothness requirements on f , and second the size of the perturbation allowed (i.e.,
the magnitude of ε). Regarding each of these we refer the interested reader to the extensive work, both theoretical and
numerical, on these questions in connection to Laplace’s [21,22,36] and Helmholtz’s equation [37,38]. In these it is shown
that the expansions are valid for quite rough profiles (twice continuously differentiable via elementary methods, or Hölder
of index 1 + θ, θ > 0, and even Lipschitz continuous via more sophisticated techniques [39]). Additionally, using analytic
continuation techniques the expansions are strongly convergent for real perturbations of arbitrary size, up to physical
obstruction (e.g., intersection of layer interfaces) [36,40].
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3.1. Expansions

To enable the perturbation strategy above to succeed, the data, ζ , and boundary operator, P , must be expanded in Taylor
series. These effectively appear in the previous publications (see, e.g., [6]), but we briefly rederive them here for complete-
ness. For the data, if we set g(x) = εf (x) in (2.1e) then

ζ (x; ε) = −eiαx−iβ(ḡ+εf )
= −eiαx−iβ ḡ

∞
n=0

(−iβ)nFnεn,

where Fn(x) := f (x)n/n!. Thus

ζn(x) = −(−iβ)ne−iβ ḡFn(x)eiαx.

Regarding the operator P we appeal to the method of Operator Expansions [7,8] and seek formulas for the action of Pn
on basis functions, in this case the complex exponentials exp(iαpx). Consider the following quasiperiodic solution of the
Helmholtz equation satisfying the OWC (i.e., satisfying (2.1a), (2.1b), and (2.1d))

Up(x, y) := eiαpx+iβp(y−ḡ)

and insert this into the definition of P , (3.1):

P(g)

eiαpx+iβpg


= P(g)


Up(x, ḡ + g)


= Ũp(x) = Up(x, 0) = eiαpx−iβp ḡ .

Setting g = εf and expanding in Taylor series results in
∞
n=0

Pn(f )εn


∞
m=0

(iβp)
mFmεmeiαpx


= e−iβp ḡeiαpx. (3.3)

At order zero

P0

eiαpx


= e−iβp ḡeiαpx,

and upon expanding a typical (L2) function in its Fourier series

ψ(x) =

∞
p=−∞

ψ̂peiαpx

we find a formula for P0 applied to ψ:

P0[ψ] = P0


∞

p=−∞

ψ̂peiαpx


=

∞
p=−∞

ψ̂pP0

eiαpx


=

∞
p=−∞

ψ̂pe−iβp ḡeiαpx =: e−iβD ḡψ, (3.4)

which defines the Fourier multiplier exp(−iβDḡ).
At order n > 0 (3.3) yields

n
m=0

Pm(f )

(iβp)

n−mFn−meiαpx


= 0,

which, upon solving for Pn, leads to

Pn(f )

eiαpx


= −

n−1
m=0

Pm(f )

(iβp)

n−mFn−meiαpx

.

Once again appealing to the Fourier series representation of the function ψ we find

Pn(f )[ψ] = −

n−1
m=0

Pm(f )

Fn−m(iβD)

n−mψ

. (3.5)

3.2. Brief numerical results: forward problem

This numerical procedure is verymuch in the spirit of thework ofMilder [7,10–12],Milder and Sharp [13,14], Kaczkowski
and Thorsos [41], and Nicholls and Reitich [37,38,42] (see also Voronovich’s Ref. [43]) and is not a significant departure
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from these. However, to give us confidence in the ‘‘forward data’’ which this method can produce, we report on a series of
numerical simulations.

We consider the following physical parameters

α = 0, β = 5.5, d = 2π, ḡ = −1.5, (3.6)

so that k =

α2 + β2 = β = 5.5, and an analytic interface profile with Fourier coefficients given by

f̂p =


1
2
(2ρ)(|p|−1)/(R−1) p ≠ 0

0 p = 0.
(3.7)

We make this particular choice as it has mean zero (f̂0 = 0), shares some height/slope characteristics of the cosine function
(since, as with the cosine, f̂1 = f̂−1 = 1/2), and one can specify the value of the R-th Fourier coefficient as ρ. To get a more
concrete feel for this profile, recall [44] that if a function has Fourier coefficients

ĥp =


CB−|p| p ≠ 0
0 p = 0,

where B > 1, then

h(x) = C


2B cos(x)− 2
B2 + 1 − 2B cos(x)


.

A brief proof comes from the elementary calculation:

h(x) =

∞
p=1

CB−peipx +

∞
p=1

CB−pe−ipx

= C


∞
p=1


B−1eix

p
+

∞
p=1


B−1e−ixp

= C


B−1eix

1 − B−1eix
+

B−1e−ix

1 − B−1e−ix


= C


eix

B − eix
+

e−ix

B − e−ix


= C


(Beix − 1)+ (Be−ix

− 1)
B2 + 1 − Beix − Be−ix


= C


2B cos(x)− 2

B2 + 1 − 2B cos(x)


.

In our case

B = (2ρ)−1/(R−1) , C =
1
2
B,

so that

f (x) = C


2B cos(x)− 2
B2 + 1 − 2B cos(x)


=

B2 cos(x)− B
B2 + 1 − 2B cos(x)

. (3.8)

For (ε, R) values (0.01, 10), (0.03, 20), and (0.05, 30) with ρ = 10−16, we display in Fig. 2 the energy defect δ = δ(ε)
versus perturbation order N . In these results we truncate all Fourier series beyond ±Nx/2 coefficients, and have selected
Nx = 128. The perturbation series are summed via classical Padé approximation [45] as we have in the previous work
[22,36,46]. In all three cases, we see the rapid and reliable convergence of our approach for this analytic yet non-trivial
interface.

4. The inverse problem

We now adopt the point of view that the problem knowns are the incident wavenumber (α, β) and some scattered
far-field data. For these we request a collection of Fourier coefficients {η̂p} such that

η(x) :=


p∈P

η̂peiαpx ≈ ũ(x).

We leave the set of modes P unspecified but remark that we can certainly expect the propagating modes, U ⊂ P , and any
(reliable) additional evanescent modes, p ∉ U, will simply add to the accuracy of our method.
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Fig. 2. Energy defect, δ, summed via Padé algorithm versus number of perturbation orders, N . Physical parameters: α = 0.0, β = 5.5, d = 2π , ḡ = −1.5;
profile parameters: (ε, R) = (0.01, 10), (0.03, 20), (0.05, 30), ρ = 10−16; numerical parameter: Nx = 128.

4.1. Order zero approximation: formula for ḡ

We recall that our governing equation, (3.2), is

ũ = P[ζ ] = P(ḡ, g)[ζ (x; ḡ, g)]

and, making the expansions we utilized with such success in Section 3, we write

ũ = P0[ζ0] + O(g).

Ignoring terms of order g and higher we have the approximation

ũ ≈ P0[ζ0].

If we now enforce both ũ = η and ũ = P0[ζ0], and insert the forms for P0 and ζ0 which we derived in Section 3.1, we find

∞
p=−∞

η̂peiαpx = η = ũ = P0[ζ0] = e−iβD ḡ

−e−iβ ḡeiαx


= e−iβD ḡ


∞

p=−∞

−e−iβ ḡeiαpxδp,0



=

∞
p=−∞

e−iβp ḡ

−e−iβ ḡeiαpxδp,0


= −e−iβ ḡe−iβ0 ḡeiα0x = −e−2iβ ḡeiαx, (4.1)

where δp,q is the Kronecker delta function, and we recall that α0 = α and β0 = β . Clearly this approximation is inaccurate
as it is most likely that η̂p ≠ 0 for p ≠ 0. However, supposing that both

η̂p ≪ 1 for p ≠ 0, and that
η̂0 ≈ 1, by equating

arguments we find

Arg{η̂0} = −2β ḡ + 2πm + π

for any integerm. The ill-posedness of our inverse problem is on full display in this equation as there are an infinite number
of solutions. However, we can make an educated selection and simply pick

ḡ =
−Arg{η̂0} + 2πm̄ + π

2β
(4.2)

for the m̄ which selects the shallowest layer (i.e., the negative ḡ of smallest magnitude).

4.2. Linear approximation (LA): formula for g

Motivated by our previous work [6], we write the governing equation (3.2) as

ũ = P0[ζ0] + {P1(·)[ζ0] + P0[ζ1(·)]} [g] + O(g2). (4.3)

Ignoring terms of order g2 we consider

ũ = b + M[g],
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where

b := P0[ζ0], (4.4a)
M := {P1(·)[ζ0] + P0[ζ1(·)]} . (4.4b)

Simply setting ũ = η, so that we match the far-field data exactly, we find g from the ‘‘Linear Approximation’’ (LA)

M[g] = η − b, (4.5)

which is essentially the ‘‘Linear Model’’ in [6] adapted to the one-layer case.

4.3. The operator M

The ill-conditioning of the inverse problem becomes apparent in this formula with a careful analysis of M . Recall that,
defining φ(x) := exp(i(−β ḡ + αx)),

P0[ψ] = e−iβD ḡ [ψ], ζ0(x) = −φ(x),

and that

P1(g)[ψ] = −P0 [g {(iβD)[ψ]}] , ζ1(x; g) = (iβ)g(x)φ(x)

so that

M[g] = P1(g)[ζ0(x)] + P0[ζ1(x; g)]
= −P0 [g {(iβD)[−φ]}] + P0 [(iβ)gφ]
= P0 [g {(iβD)[φ]} + (iβ)gφ] .

As we saw in (4.1), it is not difficult to show that

(iβD)φ = (iβD)e−iβ ḡeiαx = e−iβ ḡ(iβD)

∞
p=−∞

δ0,peiαpx = e−iβ ḡ
∞

p=−∞

(iβp)δ0,peiαpx = (iβ)φ,

so that

M[g] = P0 [g(iβ)φ + (iβ)gφ] = (2iβ)P0 [φg] .

Therefore, M is essentially the exponentially smoothing operator P0 (multiplication by φ simply delivers (φg) which is
quasiperiodic versus the periodic function g) with inverse

P−1
0 [ψ(x)] =

∞
p=−∞

eiβp ḡ ψ̂peiαpx

and we point out that, since ḡ < 0, this operator will exponentially amplify the evanescent wavenumbers, p ∉ U, giving a
severely ill-posed operator.

4.4. Nonlinear approximation (NLA): iteration scheme for g

Continuing with the program of [6] we write our governing equation (3.2) as

ũ = P0[ζ0] + {P1(·)[ζ0] + P0[ζ1(·)]} [g] + R(Ni)(g)+ O(gNi+1), (4.6)

for an approximation order Ni where

R(Ni)(g) :=

Ni
n=2

n
m=0

Pm(g)[ζn−m(x; g)].

Ignoring terms of order gNi+1 we consider

ũ = b + M[g] + R(Ni)(g),

and, after setting ũ = η, we set up the ‘‘Nonlinear Approximation’’ (NLA) iteration for the approximations g(k+1):

M

g(k+1)

= η − b − R(Ni)(g(k)), (4.7)

which is the ‘‘Nonlinear Model’’ in [6] adapted to the one-layer case. We use the solution of the LA algorithm, (4.5), as the
initial guess g(0).
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5. Regularizing the inverse problem

A standard technique from the theory of inverse problems [9] for regularizing ill-posed problems of the form
Aϕ = f ,

is to minimize the quantity
∥Aϕ − f ∥2

+ τ ∥ϕ∥
2 , τ > 0,

which, if A is compact, has unique solution, ϕτ , satisfying
τ I + A∗A


ϕτ = A∗f .

This Tikhonov Regularization technique [9] could, of course, be applied to our LA scheme, (4.5), where we set ũ = η (i.e. that
we measure the far-field exactly) and ϕ = g .

However, we choose to pursue a slightly different approach in which we allow a ‘‘defect’’ in the far-field measurement,
(ũ ≠ η), view the function pair

X := (ũ, g)T

as our unknown, and seek minimizers for the form

q̃(ũ, g) :=
1
2

ũ − η
2
L2 +

τ

2


∥g∥2

L2 + ∥∂xg∥2
L2

,

for τ > 0. We will constrain our search by demanding that the pair (ũ, g) satisfy the governing equations (3.2), and note
that q̃ penalizes both defect between actual and experimental far-field pattern, and oscillations in g . We do not change the
set of minimizers by simply subtracting the constant term 1

2 ∥η∥2
L2 , and thus we focus on the quantity

q(ũ, g) :=
1
2

ũ − η
2
L2 −

1
2

∥η∥2
L2 +

τ

2


∥g∥2

L2 + ∥∂xg∥2
L2


=
1
2


ũ, ũ


− Re


η, ũ


+
τ

2
(⟨g, g⟩ + ⟨∂xg, ∂xg⟩)

=
1
2


ũ, ũ


− Re


η, ũ


+
τ

2


g, (I − ∂2x )g


,

where

⟨f , g⟩ :=

 d

0
f (x)g(x) dx,

and we have used integration by parts. Introducing the notation

Q :=


I 0
0 τ(I − ∂2x )


, c :=


η
0


, (5.1)

we can write q as

q(X) =
1
2

⟨X,QX⟩ − Re {⟨c, X⟩} . (5.2)

5.1. Regularized linear approximation (RLA): formula for g

Recalling our governing equation, (3.2), we define a constraint function
B(ũ, g) := ũ − P(g)ζ (g),

and, from (4.3), observe that
B(ũ, g) = ũ − P0ζ0 − {P1(·)[ζ0] + P0[ζ1(·)]} [g] + O(g2),

so that, recalling (4.4), making the definition
B(1)(ũ, g) := ũ − b − M[g]

seems reasonable. If we set
A :=


I −M


, (5.3)

then
B(1)(ũ, g) = AX − b.

We consider our ‘‘Regularized Linear Approximation’’ (RLA) as finding the X satisfying the constrained quadratic optimiza-
tion problem:

min
X

q(X) = min
X


1
2

⟨X,QX⟩ − Re {⟨c, X⟩}


such that AX = b. (5.4)
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5.2. Constrained quadratic optimization

To explain our numerical procedure for solving (5.4) we recall the procedure for the corresponding problem in finite
dimensions [23]. To avoid confusion with our notation for the infinite-dimensional problem, yet be suggestive with the
details of our algorithm, we denote matrices with bold-face and vectors with an over-arrow, while using the same letter for
corresponding quantities (e.g., functions and vectors, operators and matrices). Consider the functional

q(x⃗) :=
1
2
x⃗∗Qx⃗ − c⃗∗x⃗

where Q ∈ Cn×n is Hermitian and positive definite, x⃗, c⃗ ∈ Cn, and ∗ denotes (conjugate) transpose. We seek to minimize
this subject to the set of linear constraints

B⃗(x⃗) := Ax⃗ − b⃗ = 0,

where A ∈ Cm×n, b⃗ ∈ Cm, m ≤ n, and A has full row rank m. It is well known [23] that the unique solution of this problem
can be found by the method of Lagrange multipliers in the following way. Consider the Lagrangian

L(x) := q(x⃗)− λ⃗∗B⃗(x⃗),

with Lagrange multiplier λ⃗ ∈ Cm. The first-order condition that the function q be minimized is that the gradient of the
Lagrangian be zero:

0 = ∇xL(x⃗) = Qx⃗ − c⃗ − A∗λ⃗.

Coupling this to the constraint B⃗(x⃗) = 0 gives the Karush–Kuhn–Tucker (KKT) equations
Q −A∗

A 0


x⃗
λ⃗


=


c⃗
b⃗


. (5.5)

To solve this system of equations we have two options [23]: Schur complements if Q is invertible (and easy to apply),
and the ‘‘Null Space Method’’ if the null space of A is known.With a view to future applications with multiply layeredmedia
where Q may not be invertible, we advocate the latter approach and assume that we can find the matrix Z ∈ Cn×(n−m)

containing, as columns, (n − m) linearly independent members of N (A) so that

AZ = 0.

Now, if we can easily find Y ∈ Cn×m such that the matrix (Y|Z) is nonsingular then we express x⃗ as

x⃗ = Yy⃗ + Zz⃗,

a portion in the null space of A and ‘‘another part’’. Now, inserting this into the second equation of (5.5), and using AZ = 0,
we recover

(AY)y⃗ = b⃗,

and it is not difficult to show that (AY) is invertible [23]. Now, the first equation of (5.5) reads

Q[Yy⃗ + Zz⃗] − A∗λ⃗ = c⃗.

Left-multiplying by Z∗ and recognizing Z∗A∗
= (AZ)∗ = 0 delivers

(Z∗QZ)z⃗ = Z∗
[c⃗ − QYy⃗],

where K := (Z∗QZ) ∈ C(n−m)×(n−m) can be shown to be invertible [23] and y⃗ is now known. Finally, left-multiplying the first
equation in (5.5) by Y∗ gives

(AY)∗λ⃗ = Y∗
[Q(Yy⃗ + Zz⃗)− c⃗] = Y∗

[Qx⃗ − c⃗],

where (AY)∗ is nonsingular as (AY) is. Summarizing, we solve, in order, the following

(AY)y⃗ = b⃗ (5.6a)
Kz⃗ = Z∗

[c⃗ − QYy⃗] (5.6b)

(AY)∗λ⃗ = Y∗
[Qx⃗ − c⃗], (5.6c)

where each of the operators (AY),K, and (AY)∗ is invertible.
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5.3. Regularized linear algorithm: formula

We now solve (5.4) by minimizing the function q, (5.2), using the ‘‘Null Space Method’’, (5.6), with Q and c given in (5.1),
and A given in (5.3). Inspired by the developments of the previous section we define the following operator-valuedmatrices

Z =


M
I


, Y =


I
0


,

and find:

AY = I, (AY )∗ = I, K = M∗M + τ(I − ∂2x ).

The same manipulations we displayed in the finite dimensional case can be performed again and, if we seek a solution
x = Yy + Zz, we find, cf. (5.6a),

y = b.

Using this calculation we discover that

Z∗
[c − QYy] = M∗

[η − b]

so that, cf. (5.6b),

[M∗M + τ(I − ∂2x )]z = M∗
[η − b].

Having found y and z we can form X = (ũ, g)T and recover, cf. (5.6c), that

λ = Y ∗
[Qx − c] = ũ − η.

Vanishing Smoothing Limit: in the limit τ → 0, we find

y = b, M∗Mz = M∗
[η − b], λ = ũ − η,

so that z is the least squares solution of the ill-posed equationMz = η − b. IfM−1 existed then

z = M−1
[η − b]

so that
ũ
g


= X = Yy + Zz = Yb + ZM−1

[η − b] =


I
0


b +


M
I


M−1

[η − b] =


η

M−1
[η − b]


,

which is simply (4.5).

5.4. Regularized nonlinear approximation (RNLA): iteration scheme for g

In light of the success we had in our nonlinear versus linear approximations (NLA versus LA) [6], we mimic those ideas
in the setting of the regularization outlined above, (5.4). Following that development we note that, from (4.6),

B(ũ, g) = b + M[g] + R(Ni)(g)+ O(gNi+1)

which inspires

B(Ni)(ũ, g) := ũ − b − M[g] − R(Ni)(g).

Using (5.3) once again, we find

B(Ni)(ũ, g) = AX − b − R(Ni)(g),

and consider the iterative ‘‘Regularized Nonlinear Linear Approximation’’ (RNLA) as finding the X (k+1) satisfying the con-
strained quadratic optimization problem:

min
X(k+1)

q(X (k+1)) = min
X(k+1)


1
2


X (k+1),QX (k+1)

− Re

c, X (k+1)

such that AX (k+1)
= b + R(Ni)(g(k)), (5.7)

where we select X (0) as the solution of the RLA, (5.4).
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Fig. 3. Plot of relative L∞ error in reconstructed solution (compared to the exact solution) versus the regularization parameter τ for the LA, RLA, and RNLA
algorithms. Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.01, R = 10, ρ = 10−16; numerical parameters:
Nx = 128,Ni = 8.

6. Numerical results: inverse problem

We now demonstrate the convergence behavior of these four algorithms: the Linear Algorithm (LA) (4.5), the Nonlinear
Algorithm (NLA) (4.7), the Regularized Linear Algorithm (RLA) (5.4), and the Regularized Nonlinear Algorithm (RNLA) (5.7).
Once again we select the physical parameters (3.6):

α = 0, β = 5.5, d = 2π, ḡ = −1.5,

the analytic profile, (3.8), with ρ = 10−16 and choices (ε, R) = (0.01, 10), (0.03, 20), (0.05, 30). The far-field data that we
use to generate our approximations are generated by our forward algorithm (3.2) with Nx = 128 and N = 12. We point out
that by doing this we are committing the ‘‘inverse crime’’ [25] of using a philosophically similar method to generate data for
the inversion strategy. Colton and Kress [25, p. 133, Section 5.3] point out that by doing this it is unsurprising that ‘‘. . . the
surface . . . is recovered pretty well’’. With this in mind, in Section 6.1 we add noise to the synthetically generated input data
to not only address this criticism but also more realistically simulate ‘‘real world’’ data.

Recalling the definition of the L∞ norm,

|f |L∞ := sup
0<x<d

|f (x)| ,

where the essential supremum is intended, in Fig. 3 we display a plot of relative L∞ error compared with the exact solution
versus the smoothing parameter τ in the case (ε = 0.01, R = 10). We note that for the LA and NLA methods, as
there is no smoothing, we simply plot the error as a constant function. Furthermore, the NLA line does not appear as the
algorithm diverges for this discretization due to ill-conditioning. In the less-resolved case Nx = 32 we can recover excellent
convergence for this method, cf. [6]; see Fig. 4. In Fig. 3 we notice the extremely beneficial gains in accuracy which can be
realized with both the regularizer (three orders of magnitude improvement for the Linear Algorithm), and the nonlinear
correction (over ten more orders of magnitude improvement). We point out that in this and all subsequent simulations, if τ
is chosen sufficiently large then the recovered solution is simply g(x) ≡ 0 (resulting in 100% error).

We repeat these calculations for (ε = 0.03, R = 20) and (ε = 0.05, R = 30) and display the results in Figs. 5 and 6,
respectively. Once again, we notice the extremely beneficial effects of using both the regularizer (three orders of magni-
tude improvement for the Linear Algorithm), and the nonlinear correction (seven or even nine orders of magnitude further
improvement).

Remark. Of course the key consideration in all of this is the choice of the regularization parameter τ . This is a subtle and
difficult question, and sources like Colton and Kress [25, p. 87, Section 4.2] give some guidance, however, asmostmust admit
‘‘. . . quite often the only choice for selecting the regularization will be trial and error . . . ’’ [25].

6.1. Reconstruction in the presence of noise

As the goal of our work is to apply these algorithms to data collected either in the laboratory or the field, their stability
with respect to noise is of fundamental importance.We thus test the response of the algorithms to two types of randomnoise.
Of course in real data such noise is present in all aspects of a reconstruction procedure from the specification of the incident
radiation, to the assumptions that the layers are homogeneous (or even have a layered structure), to the measurements of
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Fig. 4. Plot of relative L∞ error in reconstructed solution (compared to the exact solution) versus the regularization parameter τ for the LA, NLA, RLA, and
RNLA algorithms. Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.01, R = 10, ρ = 10−16; numerical parameters:
Nx = 32,Ni = 8.

Fig. 5. Plot of relative L∞ error in reconstructed solution (compared to the exact solution) versus the regularization parameter τ for the LA, RLA, and RNLA
algorithms. Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.03, R = 20, ρ = 10−16; numerical parameters:
Nx = 128,Ni = 8.

Fig. 6. Plot of relative L∞ error in reconstructed solution (compared to the exact solution) versus the regularization parameter τ for the LA, RLA, and RNLA
algorithms. Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.05, R = 30, ρ = 10−16; numerical parameters:
Nx = 128,Ni = 8.



36 A. Malcolm, D.P. Nicholls / Wave Motion 51 (2014) 23–40

Fig. 7. Relative L∞ error, versus regularization parameter τ , in RNLA approximation of the true interface shapewith far-field data, η̂p , polluted by absolute,
uniformly distributed noise, (6.1), of amplitudes a = 10−3, 10−2, 10−1 . Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters:
ε = 0.05, R = 30, ρ = 10−16; numerical parameters: Ni = 8,Nx = 128.

Fig. 8. Relative L∞ error, versus regularization parameter τ , in RNLA approximation of the true interface shape with far-field data, η̂p , polluted by relative,
uniformly distributed noise, (6.2), of amplitudes a = 10−3, 10−2, 10−1 . Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters:
ε = 0.05, R = 30, ρ = 10−16; numerical parameters: Ni = 8,Nx = 128.

the far-field pattern. To test our algorithms we take the point of view that the noise present in the incident wavenumber
(α, β) is negligible, while we adhere to the model of a single acoustic layer with velocity constant up to a very small error.
We introduce significant noise, however, to the far-field data we measure: {η̂p}.

For this we propose two approaches: ‘‘Absolute uniform noise’’

χ̂p := η̂p + a(2X − 1), X ∼ U(0, 1), (6.1)

where U(0, 1) is a uniformly distributed random variable on the interval (0, 1), or ‘‘relative uniform noise’’

θ̂p := {1 + a(2X − 1)} η̂p, X ∼ U(0, 1). (6.2)

For these simulations we use the rand command fromMATLAB [47] to generate the U(0, 1) samples (seeded, in every case,
with the integer 100 so as to be reproducible). To simplify the exposition of our results we restrict ourselves to the profile
(3.8) with (ε = 0.05, R = 30) and noise amplitudes a = 10−3, 10−2, 10−1.

We now present results of simulations using this noise in Fig. 7 for absolute noise, (6.1), and Fig. 8 for relative noise,
(6.2). Once again we notice the remarkable accuracy that our new RNLA algorithm can deliver, though, of course, the noise
necessarily diminishes its performance greatly. In the absolute noise casewe can realize relative accuracies of 10−3, 2×10−3,
and 9 × 10−3 for values of a = 10−3, 10−2, 10−1, respectively (for τ = 0.01 in every case).

In the relative noise case we can realize relative accuracies of 5 × 10−4, 4 × 10−3, and 4 × 10−2 for values of a =

10−3, 10−2, 10−1, respectively. In these cases these are achieved for much smaller values of τ equal to 10−5 or 10−6.
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Fig. 9. Absolute and relative L∞ error, versus regularization parameter τ , in RNLA approximation of the true Moho interface shape with far-field data, η̂p ,
polluted by relative, uniformly distributed noise, (6.2), of amplitude a = 10−1 . Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; numerical
parameters: Ni = 8,Nx = 128.

Fig. 10. Absolute and relative L2 error, versus regularization parameter τ , in RNLA approximation of the true Moho interface shape with far-field data, η̂p ,
polluted by relative, uniformly distributed noise, (6.2), of amplitude a = 10−1 . Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; numerical
parameters: Ni = 8,Nx = 128.

6.2. Moho depth variation recovery

In an effort to display the utility of our approach when applied to ‘‘real world’’ data we sought out a sample profile
inspired by the Mohorovičić (Moho) discontinuity which separates the Earth’s crust from the mantle underneath [48]. For
this we consulted the work of Zhu and Kanamori [48] on measuring the depth of this discontinuity in southern California.

We took the estimated Moho depths given in [48] beneath stations located between −116° and −117° longitude. We
assumed that these points lie roughly along a line, and then smoothed and interpolated the resulting profile to obtain an
equally sampled profile appropriate for this model (see Fig. 11). The smoothing primarily compensates for the unequal
sampling and deviations of the sample locations from a line.

Selecting the physical parameters (3.6):

α = 0, β = 5.5, d = 2π, ḡ = −1.5,

and the ‘‘Moho profile’’, we once again generate far-field data with our algorithm (3.2) with Nx = 128 and N = 12. (We
point out that these parameter choices represent illumination from a single direction from above, as opposed to the more
realistic situation of multiple directions from below.) These data were relatively polluted with uniformly distributed noise
of amplitude a = 10−1, (6.2), and given to our RLA and RNLA algorithms. The results are tabulated in Fig. 9 for the RNLA
method, and the actual reconstructions (in the case τ = 10−6) together with the exact profile are reproduced in Fig. 11.
Despite the aperiodicity of theMoho profile, we see the impressive capabilities of our new approach in recovering theMoho
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Fig. 11. Plot of experimentally inspired Moho layer shape together with RLA and RNLA reconstructions in the presence of relative, uniformly distributed
noise, (6.2), of amplitude a = 10−1 . Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; numerical parameters: Ni = 8,Nx = 128.

discontinuity. As we measure in L∞, almost all of the error is due to the non-periodicity in this more realistic simulation.
We make this more precise in Fig. 10 with L2 measurements.
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Appendix. The sound-hard case

To complement our developments in Section 2we note that an acoustic wave interactingwith a two-dimensional ‘‘sound
hard’’ periodic grating has scattered field described by the Neumann problem

1u + k2u = 0 y > ḡ + g(x) (A.1a)
∂yu − (iβD)u = 0 y = 0 (A.1b)

(∂Ñu)(x, ḡ + g(x)) = ψ(x) (A.1c)

u(x + d, y) = eiαdu(x, y), (A.1d)

where

Ñ := (−∂xg, 1)T ,

and

ψ(x) := −(iβ + iα(∂xg))eiαx−iβ(ḡ+g(x)). (A.1e)

For a surface formulation we define the exterior Neumann trace

U ′(x) := −(∂Ñu)(x, ḡ + g(x)),

so that (A.1) becomes

− U ′
= ψ. (A.2)
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Introducing the ‘‘Neumann Propagation Operator’’ (NPO) T

T (ḡ + g)[U ′(x)] := ũ(x),

cf. (3.1), the forward problem becomes a solution of the equation

ũ(x) = T [U ′
] = −T [ψ(x)] = −T (g)[ψ(x; g)]. (A.3)

Again, setting g(x) = εf (x), expanding

T = T (εf ) =

∞
n=0

Tn(f )εn, ψ = ψ(x; εf ) =

∞
n=0

ψn(x)εn,

and

ũ = ũ(x; ε) =

∞
n=0

ũn(x)εn,

we insert these into (A.3). The n-th correction ũn solves

ũn = −

n
m=0

Tn−m[ψm],

and we again obtain a highly accurate approximation

ũN(x; ε) :=

N
n=0

ũn(x)εn,

which may be summed directly (Taylor summation) or via numerical analytic continuation methods (Padé summation).
Finally, to enable our perturbation strategies for both the forward and inverse problems, we note the following

expansions which can be derived as ζn and Pn were in Section 3.1. At order zero

ψ0(x) = −iβe−iβ ḡeiαx

T0 = −
1

(iβD)
e−iβD ḡ ,

and at order n > 0

ψn(x) =

−iβ(−iβ)nFn(x)− iα(∂xf )(−iβ)n−1Fn−1(x)


eiαxe−iβ ḡ

Tn =

n−1
m=0

Tm(f )


k2Fn−m + ∂xFn−m∂x

(iβD)

n−m−2 .
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