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S U M M A R Y
Time-shift estimation between arrivals in two seismic traces before and after a velocity per-
turbation is a crucial step in many seismic methods. The accuracy of the estimated velocity
perturbation location and amplitude depend on this time shift. Windowed cross-correlation
and trace stretching are two techniques commonly used to estimate local time shifts in seismic
signals. In the work presented here we implement Dynamic Time Warping (DTW) to estimate
the warping function – a vector of local time shifts that globally minimizes the misfit between
two seismic traces. We compare all three methods using acoustic numerical experiments. We
show that DTW is comparable to or better than the other two methods when the velocity per-
turbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio
is low, we find that DTW and windowed cross-correlation are more accurate than the stretching
method. Finally, we show that the DTW algorithm has good time resolution when identifying
small differences in the seismic traces for a model with an isolated velocity perturbation. These
results impact current methods that utilize not only time shifts between (multiply) scattered
waves, but also amplitude and decoherence measurements.

Key words: Time-series analysis; Interferometry; Seismic monitoring and test-ban treaty
verification; Coda waves.

1 I N T RO D U C T I O N

Measuring the time shift (or alignment) between two events in a
pair of seismic traces is an important step in many geophysical
applications. For example, one can use local cross-correlation of
neighbouring seismic traces to estimate residual statics (e.g. chap-
ter 3.3 in Yilmaz 2001). In imaging and tomography, one often
compares time shifts between observed and synthetic data in order
to update the next iteration of a velocity model (e.g. Burdick et al.
2013). In reservoir monitoring studies, one looks for time-dependent
velocity changes in the subsurface, usually manifested as changes
in arrival times (e.g. Khatiwada et al. 2012). Therefore, we need
robust methods to estimate small arrival time differences between
seismic traces, even when the signal-to-noise ratio approaches as
low as one. Here we focus on one specific application—coda wave
interferometry—but we emphasize that our findings likely have
value in other geophysical applications that seek to measure shifts
between regularly sampled data either in space or time.

In seismology, the (multiply) scattered wavefield is commonly
called the coda. Extracting information about the subsurface from
this often chaotic looking coda is a difficult task. For decades seis-
mologists have worked to unravel the coda signal, hoping to learn
something about either the seismic source or the (an)elastic prop-

erties of the Earth’s crust. For example, coda amplitudes have been
used to determine earthquake magnitude (see chapter 3.2 in Sato
et al. 2012, and references therein) and forecast volcanic eruptions
(Aki & Ferrazzini 2000). Within the last decade, due to the prolifer-
ation of the ambient noise correlation method (Shapiro & Campillo
2004; Sabra et al. 2005), coda traveltimes have been used as a tool
to monitor small velocity changes in the subsurface continuously
through time (see Poupinet et al. 2008, and references therein). As
coda comprises (multiply) scattered waves, these waves often tra-
verse the Earth along a much longer path than the ballistic waves
used in tomographic imaging (e.g. Nolet 2008). The fact that the
coda have spent more time sampling the subsurface means that
they are more sensitive to any velocity perturbations. Therefore,
numerous researchers have spent time developing methods to mea-
sure velocity changes using coda and then image those changes in
space (e.g. Sens-Schönfelder & Wegler 2006; Brenguier et al. 2008;
Wegler et al. 2009; Brenguier et al. 2014).

In its most simple form, coda wave interferometry maps coda
arrival time perturbation measurements (τ ) to velocity perturbations
(�V) using

τ

t
= −�V

V
, (1)
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where t is the lapse time in the coda at which lag τ is measured and V
is the background velocity without the perturbation (e.g. Grêt et al.
2006, equation 1). We note that this equation is true under the as-
sumption that the velocity perturbation occurs everywhere and with
the same amplitude (i.e. �V is homogeneous). In this case, we see
that there exists a one-to-one mapping of the measured coda arrival
time perturbation to the estimated velocity perturbation. Pacheco &
Snieder (2005) developed a framework for the spatial and temporal
sensitivity of τ when �V is not homogeneous. In this case, there is
a kernel K that modifies the right hand side of eq. (1). Many authors
continue to work on analytical and numerical methods to approx-
imate and compute these sensitivity kernels (Pacheco & Snieder
2005, 2006; Obermann et al. 2013; Mayor et al. 2014; Planès et al.
2014, 2015; Richter et al. 2014), but any further treatment of this
part of the problem is beyond the scope of this paper.

The remainder of this paper focuses on our ability measure τ .
It is obvious that even without the assumption of a homogeneous
velocity perturbation, accurate estimation of τ determines the ac-
curacy of the estimated velocity perturbation. In this paper, we
consider three time-domain methods to measure τ : (1) windowed
cross-correlation, (2) trace stretching and (3) dynamic time warping
(DTW). Analogous to windowed cross-correlation is the Fourier
domain moving-window cross spectral technique (Poupinet et al.
1984), and recent studies have characterized the accuracy of τ esti-
mation from the windowed cross-correlation and stretching methods
(e.g. Clarke et al. 2011; Zhan et al. 2013). In our study we intro-
duce DTW as a new method for coda wave arrival time difference
measurements. In doing so, we compare this new approach with
existing methods. In the following sections we compare and con-
trast the three methods using a number of numerical experiments
and note that Kanu & Munoz (2014) performed a similar study,
comparing these three methods using microseismic event models.
We investigate the underlying assumptions in each method and dis-
cuss the implications of these assumptions and consequences of
each method on the measured τ . In certain cases we find that DTW
offers advantages over present methods.

2 T H E O RY A N D C O M PA R I S O N O F
A P P ROA C H E S

In this section we present an introduction to each of the three
methods used to measure coda time shifts—(1) windowed cross-
correlation, (2) trace stretching, and (3) DTW. We describe the
underlying mathematics and assumptions in each of the methods
and compare the results of each method using a multiple scattering
numerical experiment with a homogeneous velocity perturbation.

2.1 The numerical experiment

We generate synthetic waveforms using the Seismic Unix code
sufdmod. This is a 2-D acoustic finite-difference code. We use a
32 × 32 km acoustic domain with absorbing boundaries on all four
sides. We place a source and a receiver at the centre of the do-
main and model the acoustic wavefield for 10 s. The source is a
Ricker wavelet with a dominant frequency of 12.5 Hz. To speed
the time-domain measurement process, waveforms are resampled
to a sample interval of 1 ms after the simulations. In the following
examples we compare two simulations u0(t) and u(t).

In the first simulation u0(t), the background velocity model is
6 km s−1 and in the second simulation u(t), the background ve-
locity is 5.94 km s−1. The second background velocity model is

1 per cent slower than the first, representing a −1 per cent change
(i.e. �V/V = −1 per cent). The first background model is shown in
Fig. 1(a). The density in each model is the same and we change only
the velocity. In order to have phase arrivals to compare arrival time
measurements, we need a velocity model with scattering. There-
fore, we generate a single zero-mean random Gaussian perturbation
model with a perturbation correlation length of 400 m. The random
velocity model is shown in Fig. 1(b). Note that the black triangle
and star in Figs 1(a) and (b) represent the collocated receiver and
source positions, respectively.

We drape this random model over the two different back-
ground models and use these models as the input velocity field
for the finite-difference simulations. Fig. 1(c) shows the final ve-
locity model used to simulate u0(t). This type of random ve-
locity model causes scattering of the acoustic waves (Fig. 2),
which we use to compare the arrival time difference measurement
methods.

2.2 Windowed cross-correlation

The first method we consider is windowed cross-correlation.
Arrival time differences have been estimated using windowed cross-
correlation (or moving-window cross spectral method in the fre-
quency domain) by numerous authors (e.g. Poupinet et al. 1984;
Roberts et al. 1992; Grêt et al. 2006; Snieder 2006; Haney et al.
2009). The windowed cross-correlation that we implement is

CC(τ ) =
∫ t2

t1
u0(t)u(t + τ ) dt√∫ t2

t1
u0(t) dt

∫ t2
t1

u(t) dt
. (2)

This method is referred to as windowed cross-correlation because
of the limits t1 and t2. In the synthetic example we show in Fig. 3,
we arbitrarily set t1 = 1 s and t2 = 2 s. The two input waveforms
are shown in the inset of Fig. 2, and the resulting cross-correlation
function CC(τ ) is shown in Fig. 3(a).

In this method, the lag τmax associated with the cross-correlation
maximum CCmax is the value we take to estimate the veloc-
ity perturbation. Taking the centre of the analysis window at
tmid = t1 + (t2 − t1)/2, we compute the homogeneous velocity
perturbation following eq. (1) as

τmax/tmid = (0.01/1.5) × 100 = 0.66 per cent = −�V/V . (3)

This is close to the actual perturbation of �V = −1.0 per cent,
and we note that we could improve the accuracy by subsampling
the time series or subsampling the correlation function and fitting a
polynomial to the peak in the correlation function. However, there is
a fundamental reason why the estimate is not exact and will never be
exact even with the subsampling trick. The underlying assumption
in the windowed cross-correlation measurement is that one trace is
a time shifted version of the other trace. If this was the case, then
the maximum correlation should equal 1.0 and the lag at the maxi-
mum correlation coefficient gives the correct time shift. If we look
at the two traces more closely (Fig. 2 inset), we immediately see
that the arrival time perturbations on the right side of the window
are larger than those on the left side. Therefore, it is obvious that
the two traces are not simply time shifted versions of each other,
and we should not expect this method to give a correct velocity
perturbation. As one may guess, we in fact find that the maximum
correlation only reaches 0.98 (Fig. 3a).
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Figure 1. (a) Homogeneous background model; the model domain is 32 × 32 km. (b) Zero-mean random Gaussian model with a correlation length of 400 m.
(c) Final velocity model for u0(t) where (b) is added to (a). The black triangle and star in (a) and (b) are the colocated receiver and source, respectively.

Figure 2. Zero-offset wavefield recorded in the centre of the model domain.
The black trace shows the model with background velocity 6 km s−1, which
we call u0. The red trace shows the wavefield for the background velocity
model that is 5.94 km s−1, which we call u. Note that the large amplitude
direct wave near t = 0 is clipped to highlight the scattered waves. Inset:
two seconds of the traces; shaded area highlights the time window used to
compare methods in Section 2.

2.3 Trace stretching

In the search for improved coda arrival time difference
measurements, the trace stretching method was developed
(Sens-Schönfelder & Wegler 2006; Hadziioannou et al. 2009). The
stretching method is based on the assumption that one trace is
a stretched version of the other trace, rather than a time shifted
version. Furthermore, the stretching is assumed linear with the
relationship

τ = εt, (4)

where ε is the stretch factor related to the homogeneous velocity
perturbation as ε = −�V/V. In practice, we stretch the time axis as
t′ = t(1 + ε). Therefore, a decrease in velocity causes a lengthening
of the time axis. After stretching u(t) we then compute the zero-lag
cross-correlation over the window [t1, t2]:

CC(ε) =
∫ t2

t1
u0(t)u(t ′) dt√∫ t2

t1
u0(t) dt

∫ t2
t1

u(t ′) dt
. (5)

To estimate the optimal stretch factor we test many ε values and
search for the maximum zero-lag cross-correlation coefficient. The
stretch function CC(ε) for the trace window from t1 = 1 s to t2 = 2 s
is shown in Fig. 3(b).

In this particular case, where we have a homogeneous veloc-
ity perturbation, u(t) is actually a stretched version of u0(t), and
we see that we recover a correlation coefficient of 1.0 at exactly
ε = 0.01. Thus the stretching can be an improvement over the win-
dowed cross-correlation method; however, keep in mind that we
have made the assumption that within the analysis window, one
trace is a stretched version of the other. Furthermore, as Zhan et al.
(2013) demonstrated, one must be careful because stretching mixes
the phase and amplitude spectra. Therefore, changes in the source
amplitude spectra can lead to errors in the stretching coefficient
estimation. We will touch on this notion of changing source spectra
in Section 6.2.

2.4 Dynamic time warping

The two previously discussed methods both impose assumptions
that may not always be valid. In particular, when the velocity per-
turbation is not homogeneous then only certain parts of the coda
are sensitive to the perturbation. In this case, the size and the lo-
cation of the coda analysis window becomes extremely important
as we demonstrate in Section 5. Because of this, we have studied
DTW in the seismological context to see how this method works
for coda wave arrival-time difference measurement. The name for
DTW stems from the field of dynamic programming, which implies
breaking one complex problem into many simpler subproblems in
order to solve the problem. This idea has been used in seismology
before, though maybe not referred to as dynamic programming (e.g.
the partitioned waveform inversion of Nolet 1990).

DTW is a non-linear optimization method developed in speech
recognition (Sakoe & Chiba 1978; Müller 2007). It has been shown
to accurately estimate nonlinear time shifts when strong noise is
present (e.g. Hale 2013). Furthermore, DTW has high temporal
resolution and suppresses cycle skipping because we fit the entire
trace. There is also no averaging over windows. Recent examples of
DTW applied to seismology can be found in the seismic exploration
literature (e.g. Herrera & van der Baan 2012; Muñoz & Hale 2012;
Hale 2013; Yang et al. 2014a,b).

If we think of trace stretching as a linear stretch, we can think of
DTW as a nonlinear stretch. Consider the seismogram u0(t), where
t is the lapse time. If we apply the time-varying shifts s(t) to u0(t)
such that t′ = t + s(t), then we obtain a second seismogram

u(t) ≈ u0(t ′). (6)

In DTW, we want to estimate the shift function s̄(t) that minimizes
the misfit between the two traces u0(t) and u(t). We refer the reader
to Hale (2013) for the complete details of this constrained nonlinear
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Figure 3. (a) The cross-correlation function (eq. 2) for the two traces shown in Fig. 2 inset. (b) The stretching correlation coefficient (eq. 5). (c) The distance
function d (eq. 10), with b = 5, the warping function (red), and the linear fit (dashed-black). The linear fit gives a slope of m = 0.01.

optimization problem and the boundary conditions, but below we
briefly outline the main steps in the algorithm in order to illustrate
how the constraints relate to the problem at hand.

The first step in DTW is to compute an error function between
the two traces:

e(t, τ ) = (u(t) − u0(t + τ ))2 , (7)

where τ is a vector of lags, defined by the user from −τmax to +τmax

with the same sample interval as the signals (dt = dτ ). Here, we
define the error function as the squared difference of amplitudes,
but one could also use another norm, such as the absolute value
of the difference. The second step is to accumulate these errors in
time; thus creating the so-called distance function d(t, τ ):

d(t1, τ ) = e(t1, τ ),

d(ti , τ j ) = e(ti , τ j ) + min

⎧⎨
⎩

d(ti−1, τ j−1)
d(ti−1, τ j )
d(ti−1, τ j+1)

, (8)

for i = 2, 3, . . . , N, where N is the number of samples in the two
traces and j = 2, 3, . . . , M − 1, where M is the number of elements
in the τ vector.

From the distance function we can find the minimum accumulated
distance D at the last time sample N

D = min
τ

d(tN , τ ). (9)

Given that we know D and at which τ D exists, the previous min-
imum distance must come from a distance on the right hand side
of eq. (8). We can then backtrack to recursively find the optimal
warping path, from here on called the warping function s̄(t). This is
the function that globally minimizes the distance between the two
traces (i.e. D), in essence the optimal fit.

Using this approach, s̄(t) is the set of lags that give the global
minimum misfit between u0(t) and u(t) subject to the constraints:

(i) The maximum comparison distance is ±τmax

(ii) The maximum step is dt, where dt is the sample interval (i.e.
|s̄(ti ) − s̄(ti−1)| ≤ dt).

This latter constraint is due to our chosen step pattern defined in
eq. (8), and next we discuss modifications to the step pattern that
make this optimization better suited to the coda wave interferometry
problem.

2.4.1 Step pattern design

In the context of velocity perturbations, the step pattern can be
thought of as limiting the magnitude of the velocity perturbation.
Using eq. (8), the velocity perturbation can be ± 100 per cent,
meaning in one time-step dt, we can make one lag-step dτ . In many
geophysical problems this is an unrealistic change, and therefore, we
can modify the time-step pattern defined in eq. (8) so that maximum
perturbation is much less than 100 per cent. Müller (2007) gives
example step patterns and the associated boundary conditions in
Section 4.2.1. Here we follow Hale (2013) and modify eq. (8) so
that

d(t1, τ ) = e(t1, τ ),

d(ti , τ j ) = e(ti , τ j ) + min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(ti−b, τ j−1) +
i−b+1∑
c=i−1

e(tc, τ j−1)

d(ti−1, τ j )

d(ti−b, τ j+1) +
i−b+1∑
c=i−1

e(tc, τ j+1)

, (10)

where we have introduced the integer parameter b ≥ 2 and i = b + 1,
b + 2, . . . , N and j is the same as in eq. (8). The DTW optimization
now has dτ = b ∗ dt and is constrained such that

|s̄(ti ) − s̄(ti−1)| ≤ dτ

b
. (11)

This has the effect of limiting the maximum velocity perturbation;
for instance if b = 2, the maximum velocity perturbation is 50 per
cent. This is sometimes referred to in the literature as the slope
constraint. For a review of various step patterns we refer the reader
to the speech recognition literature (e.g. Rabiner & Juang 1993;
Müller 2007), where they also describe boundary conditions for
each step pattern.

For the traces in Fig. 2, the log10 of the distance function is shown
in Fig. 3(c) with τmax set to 0.025 s and b = 5 (max �V/V = 20
per cent). The red line shows the estimated warping function.
Because we are dealing with a homogeneous velocity perturbation
τ/t = −�V/V, and we can simply fit a line (dashed-black in Fig. 3
c) to s̄(t) to estimate �V/V, which in this case is −1.0 per cent.
We note that increasing b will decrease the maximum allowed shift,
thus making a smoother estimate of s̄(t). We explore the influence
of b in the next section.

To summarize our results of this toy model, in Table 1 we list
the consequence imposed on the shape of the warping function
s(t) by each of the three methods discussed above. Within a given
time window s(t) is assumed (1) constant using the windowed
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Figure 4. (a) The lag τ at each lapse time for the varying window lengths in the sliding window cross-correlation method. (b) The time normalized lag giving
an estimate of homogeneous negative velocity perturbation. (c) The maximum correlation coefficient for each window length.

Table 1. Comparison of assumptions imposed on the warping func-
tion by each measurement method.

Method Correlation Stretching DTW

s(t) = τ t ∗ ε s̄(t), subject to (�V/V)max

cross-correlation method, (2) linearly increasing using the stretch-
ing method, and (3) any function subject to the constraints already
listed using the DTW method.

3 C YC L E S K I P P I N G

One challenge in coda arrival-time difference measurements, not
to mention other methods like waveform inversion, is cycle skip-
ping. The problem of cycle skipping presents itself in many seismic
contexts, from waveform inversion to residual statics—really any
method that attempts to measure local arrival time differences be-
tween waveforms. Cycle skipping in this context is when one wiggle
(wave arrival) on the first trace wants to align with the wrong wig-
gle on the other trace because there are multiple wiggles within the
analysis window. This is a common problem if (1) the noise is too
large, (2) the analysis window is not long enough, (3) the arrival
time difference exceeds the dominant period (e.g. McGuire et al.
2012; Richter et al. 2014), or (4) the arrivals diverge too much or
disappear altogether due to changes in scattering and interference.
The cycle skipping problem is further exacerbated when the data
are monochromatic or have small bandwidth.

In this section we investigate how well the three measurement
methods work when we compare different lapse times in the traces,
keeping in mind that as we go to larger lapse times, the time shifts be-
tween the wiggles increase. The most common approach to measure
local arrival time differences is to slide a window through the two
traces, making comparisons in each window. For cross-correlation
and stretching, this means that we must choose a window length
(e.g. 1 s) and then slide that window (e.g. every 0.5 s) from the
beginning to the end of the traces. From each window we collect the
maximum correlation value and lag, or ε, from windowed cross-
correlation or stretching measurements, respectively. Clearly this
introduces a parameter (the window length) in the process. In the
following subsections we test the windowed cross-correlation and
stretching methods using window lengths from 0.1 s to 1.0 s, in-
crementing at 0.05 s, and we slide these windows through the data
one sample at time. When plotting the results we multiply both the
window length and lapse time by the dominant source frequency
(12.5 Hz) so that the axes are in terms of cycles. This gives a more

intuitive feel for how many wiggles must be in a window in order
to attain stable measurements.

3.1 Windowed cross-correlation

The lag τ associated with the maximum cross-correlation coefficient
for each analysis window and each window length is shown in
matrix form in Fig. 4(a). In Fig. 4(b) we plot the lag normalized
by lapse time, which gives an estimate of the normalized velocity
perturbation τ/t = −�V/V in each window. We see direct evidence
of cycle skipping in Fig. 4(a), indicated by the black arrows. Because
we know that all shifts should be positive in this example, when τ

goes toward zero or negative time, this indicates cycle skipping,
as the wiggles within the analysis window require zero shift or
negative shift to align. We note that the occurrence of cycle skipping
is directly related to (1) the window length and (2) the lapse time.
At short window lengths, the correlation does not find the true shift,
and at large lapse times, the shift between the two traces can be
larger than the window. Therefore, cycle skipping can continue to
exist at large lapse times, even for large window lengths that contain
many cycles. This effect can be seen most easily in the correlation
coefficient plot in Fig. 4(c), where even at large window lengths the
correlation coefficient decreases with lapse time.

Noting the decrease in the maximum cross-correlation coeffi-
cient when cycle skipping occurs, in this particular example (i.e.,
�V/V = −1 per cent), we would need a minimum window length
of approximately five cycles to prevent cycle skipping at the maxi-
mum lapse time. Furthermore, we highlight that along the edges of
each panel in Fig. 4 there exists so-called zero data that increase in
length along the edges from bottom to top. This is because of the
tmid variable discussed in Section 2.2. We assign correlation and lag
values to the middle of the analysis window; therefore, the edges
have no measured data. We could implement a boundary condi-
tion that uses a smaller window of data along the edges. However,
the measurements would have a different signal-to-noise ratio, and
therefore we neglect this in our present analysis.

Before moving on to the stretching method, we modify the win-
dowed cross-correlation method by applying the accumulated lag
prior to the cross-correlation. By this, we mean that at window i,
we apply τ i−1 to u0(ti). In this numerical example, this modification
reduces the occurrence of cycle skipping (Fig. 5). This is a simple
modification that can improve the sliding window cross-correlation
results when the signal-to-noise ratio is large. Note that cycle skip-
ping is completely removed and that the colour scale in Fig. 5(c) has
a minimum amplitude of 0.95 as compared to 0.4 in Fig. 4(c). There
is one caveat to this modification though, and we investigate this in
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Figure 5. (a) The lag τ at each lapse time for the varying window lengths in the modified sliding window cross-correlation method. Note the absence of
cycle skipping when compared to Fig. 4. (b) The time normalized lag giving an estimate of homogeneous negative velocity perturbation. (c) The maximum
correlation coefficient for each window length.

Figure 6. (a) The lag τ at each lapse time for the varying window lengths in the stretching method. Note the absence of cycle skipping when compared
to Fig. 4. (b) The time normalized lag giving an estimate of homogeneous negative velocity perturbation. (c) The maximum correlation coefficient for each
window length.

a later example. The time shift τ i−1 must be accurate; otherwise,
this modification can degrade τ estimates.

3.2 Stretching

Now we make the same comparison with the stretching method. In
Fig. 6 we present the results of applying stretching with the different
window lengths. In this case, we see that the τ estimates are even
more stable (Fig. 6a) than in the previous correlation examples. We
see even less variation in the normalized lag time (Fig. 6b), with
the majority of the values estimated very near 1.0 per cent. We also
note that there is no cycle skipping present in the stretching method
results, and the correlation coefficients [Fig. 6(c)] are even larger
than the modified cross-correlation method.

3.3 Dynamic time warping

It is quite obvious that the stretching and the modified
cross-correlation methods outperform the traditional windowed
cross-correlation method in this particular example. To round out
our tests, we show the results for DTW. However, in this case, there
is no window size to vary. Therefore, we test various b values and
set τmax = 1 s; we plot in matrix form for comparison with the other
methods (Fig. 7). The first thing to note is the consistency between
the results for all b values. We see that all b values give extremely
similar results, and there is a gradual increase in the residual misfit

r (Fig. 7c), which we compute as

r =
N∑

i=1

[u(ti ) − u0(ti + s̄(ti ))]
2 . (12)

As we restrict the b value we see that the misfit slowly increases,
as one might expect when we impose a smooth solution to the
optimization problem. The second thing to note is that the edges
now have data as DTW analyzes the entire trace, without restrictions
from window lengths. We highlight the influence of the direct wave
here using Fig. 7(b). DTW does not detect any shift in the direct
wave (τ/t = 0), which makes sense as the source and receiver are
collocated and the direct wave does not actually propagate through
the original or perturbed models.

From this model we can make a few conclusions. We find that
the DTW approach gives extremely similar results to the other
two methods. There is no cycle skipping present in any of the three
methods once we modify the windowed cross-correlation algorithm.
Lastly, the edges of the traces are measured using the DTW method.
Therefore, DTW appears to be at least as good, if not better, than
the two commonly used methods of windowed cross-correlation and
stretching for coda wave arrival-time difference estimation in the
noise-free case.

What is perhaps more insightful is to look at just how well the dif-
ferent approaches actually estimate the velocity perturbation. To do
this we linearly fit the lag as a function of lapse time using weighted
ordinary least-squares fitting (Brenguier et al. 2008; Haney et al.
2015). The weights are the correlation coefficients; therefore, lag
windows with low correlation values are down weighted relative to
lags with high coefficients in the cross-correlation and stretching
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Figure 7. (a) The lag function associated with each b value. (b) The time normalized lag giving an estimate of homogeneous negative velocity perturbation.
(c) The residual misfit computed along the warping path as defined in eq. (12).

Figure 8. (a) τ/t linear fit for different window lengths (black axes) and b values (red axes) for the noise-free, homogeneous �V case. (b) Same as (a) but for
the traces with coda SNR = 1. In the windowed cross-correlation and stretching methods we only fit lag times where CC ≥ 0.6. Legends are the same in both
(a) and (b).

methods; all data are weighted equally in the DTW method. We con-
strain the fitting at t = 0 (i.e. τ 1 = 0), and in the cross-correlation and
stretching methods, we only use lags with a correlation coefficient
of 0.6 or above. Clarke et al. (2011) showed that thresholding in
this way improves the reliability of velocity perturbation estimates.

We compare the fits for all four methods in Fig. 8(a). For clarity
we do not plot the error bars. As we could expect from analyzing the
results in Figs 4 to 7, at small window lengths, the accuracy of the
fit to the lag function varies, especially for the standard correlation
method—the first five points are below 1.0 per cent. As we also
would expect, we see a very good agreement between the stretch
and DTW methods.

4 L OW S I G NA L - T O - N O I S E DATA
C O M PA R I S O N

To get an idea of how well each method handles low signal-to-
noise ratio (SNR) data, we add band-limited (0.5 to 30 Hz) random
Gaussian noise to each trace. The noise that we add is zero mean
and the amplitude is equal to the maximum amplitude of the coda,
where the maximum amplitude of the coda is taken as the maximum
absolute value between 2 to 10 s from u0(t). The SNR of the coda is
therefore approximately equal to one. The traces with and without
added noise from t = 1 s to t = 3 s are shown in Fig. 9. Note that
the noise is different in each trace.

Figure 9. Example of coda from t = 1 s to t = 3 s with and without band-
limited zero mean random Gaussian noise. The SNR of the coda is now
approximately equal to one in the Noisy case. Black is u0 and red is u.

We first compare the two windowed cross-correlation methods;
Fig. 10 shows the results from the standard method while Fig. 11
shows the modified method. There is no major difference between
the two approaches, and accumulating the lags in the modified
method does little to help. If anything, accumulating previous lags
may even degrade the results because in some windows we apply
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Figure 10. (a) The lag τ at each lapse time for the varying window lengths in the sliding cross-correlation method for noisy data. (b) The time normalized lag
giving an estimate of homogeneous negative velocity perturbation. (c) The maximum correlation coefficient for each window length.

Figure 11. (a) The lag τ at each lapse time for the varying window lengths in the modified sliding cross-correlation method for noisy data. (b) The time
normalized lag giving an estimate of homogeneous negative velocity perturbation. (c) The maximum correlation coefficient for each window length.

Figure 12. (a) The lag τ at each lapse time for the varying window lengths in the stretching method for noisy data. (b) The time normalized lag giving an
estimate of homogeneous negative velocity perturbation. (c) The maximum correlation coefficient for each window length.

incorrect lags before correlation. For instance, the modified method
overestimates the shift in a number of places around 25 and 50
cycles (indicated by brown patches), regardless of window length.
We also find that the cross-correlation coefficients are more similar
now between the two methods than in the noise-free case. Lastly, we
highlight that both algorithms suffer from cycle skipping and exhibit
varying degrees of sensitivity in relation to the window length.

Similar to the windowed cross-correlation, the stretching method
does well up to a point (Fig. 12). Around 100 cycles the stretching
method also begins to cycle skip—as is evidenced by the blue streaks
for all window lengths (Fig. 12a). The noise is too significant at this
point in the lapse time. A similar result was found by Hadziioannou
et al. (2009).

As one might suspect, the DTW results (Fig. 13) are more stable
and accurate than the other methods. Regardless of b (except for
1 ≤ b ≤ 6), we see that DTW estimates do not suffer from cycle

skipping when the SNR is close to one (Fig. 13a); we also see that the
estimates of the time shifts are accurate for nearly the entire length
of the trace. Finally, in Fig. 13(c) we see a similar variation in the
residual misfit given the different b values, and we note that there
is little variation in the residual value because the high amplitude
direct wave is included in the residual estimate. The residual is
larger than for the noise-free case however. Lastly, for now there is
no obvious reason as to why 1 ≤ b ≤ 6 fails to yield accurate results.
We suspect the noise is too large and that we have approached the
limits of the DTW method.

To make more quantitative conclusions about the different meth-
ods, we again linearly fit the lag functions for each window length
and b value with the constraint that τ i=1 = 0 (Fig. 8b). For small
windows and small b values, all methods give inaccurate estimates
of the true perturbations. At larger windows and b values the win-
dowed cross-correlation and DTW methods give estimates near
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Figure 13. (a) The lag function associated with each b value for noisy data. (b) The time normalized lag giving an estimate of homogeneous negative velocity
perturbation. (c) The residual misfit computed along the warping path.

Figure 14. (a) Homogeneous background model with a 1 per cent decrease in the model in the lower right corner; the model domain is 32 × 32 km and the
diameter of the perturbation is 4 km. (b) Zero-mean random Gaussian model with a correlation length of 400 m. (c) Final velocity model for u(t) where (b) is
added to (a). The black triangle and star in (a) and (b) are the colocated receiver and source, respectively.

1 per cent. The stretching method either over- or underestimates
the velocity perturbation. Above b = 6, the DTW method estimates
the velocity perturbation well; however, all other methods vary as a
function of window length. From this we conclude that DTW is a
more stable and accurate method to measure homogeneous velocity
changes when the data have low SNR.

5 A N I S O L AT E D V E L O C I T Y
P E RT U R B AT I O N

When the velocity perturbation is heterogeneous, we further violate
assumptions in both the windowed cross-correlation and stretching
methods. The time shifts are by no means constant, nor are they lin-
early increasing over a given analysis window. Waves arrive from all
parts of the model and likely interfere in time and space with the few
waves that have sampled the change. Therefore, one must be clever
in choosing the correct (1) window length and (2) lapse time over
which to make meaningful measurements. To demonstrate the sen-
sitivity of the methods to this type of isolated velocity perturbation
model we again turn to synthetic data.

We make a 1 per cent decrease in velocity in a small circle in the
lower right corner of the model domain (Fig. 14a). The transition
in the velocity model from the background to the perturbation is a
cosine taper function. In numerical testing, a length of 2 km was
sufficient to avoid a sharp velocity contrast, which would cause
coherent scattering. We want the waves to scatter only due to the
random model (Fig. 14b), not the background model. We can see in
the complete velocity model (Fig. 14c) that the velocity perturbation
is not visually apparent. In this example, u0(t) is the signal from the

model without the perturbation (i.e. V = 6 km s−1 everywhere) and
u(t) is the signal with the isolated perturbation in the lower right.

We compare the standard cross-correlation method with the
stretching and DTW methods. We plot the lags in Figs 15(a)–
(c) for windowed cross-correlation, stretching and DTW, respec-
tively. In Figs 15(d)–(f) we plot the lag-normalized perturbation
estimates. It is reasonable to expect localized traveltime changes
for an isolated perturbation, and we see that at all window lengths,
the cross-correlation and DTW methods are sensitive to the arrival
time changes at all times after 50 cycles. However, the stretching
method largely detects a single shift around 60 cycles and nothing
afterwards. If we compare DTW and windowed cross-correlation
to stretching, we realize that the wide orange streak in the latter ap-
proach is due to averaging over the analysis window. This leads to
the interpretation that all arrival-times in that region have changed,
while we can see from DTW and windowed cross-correlation that
this is not the case. Interestingly, we also see that the DTW lags
show more sensitivity compared to the windowed cross-correlation,
where we see reduced amplitudes because of averaging over the
correlation window. Investigating DTW to image isolated pertur-
bations will be a future study, but we highlight here that DTW is
sensitive to this type of coda wave change.

6 D I S C U S S I O N

We first note that once we have an isolated velocity perturbation, the
linear relationship between τ/t and �V/V no longer exists. Instead
we need a sensitivity kernel to interpret τ (Pacheco & Snieder 2005,
2006; Planès et al. 2014). Therefore, there is little to be gained
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Figure 15. (a–c) Lag τ estimates for isolated velocity perturbations using each method. (d–f) Corresponding normalized time τ/t estimates from each method.
The DTW identifies more lapse times with coda changes than do the other two methods.

Figure 16. Correlation coefficients for each of the three correlation methods: (a) windowed cross-correlation, (b) stretching and (c) modified windowed
cross-correlation. All three identify the changes in the coda beginning around 50 cycles, regardless of the window length.

by comparing lag normalized images in the isolated perturbation
example (Figs 15 d–f). To determine which method is more accurate,
we would need to actually localize and estimate the amplitude of
the velocity perturbation in a tomographic sense (e.g. Obermann
et al. 2013; Brenguier et al. 2014; Planès et al. 2014). Instead we
consider only τ for the purpose of investigating how well each
method does to identify the area of changes. We find that the DTW
method improves our capability to locate in time where the changes
in coda occur. All of the streaks in Fig. 15(c) match with what the
eye visually sees when comparing traces. This is not the case with
the stretching method results in Fig. 15(b), which depend heavily
on the window size.

In addition to the lag times, one can look at the correlation coef-
ficients. Recent studies have utilized the decorrelation as a means
to image localized scatterers (e.g. Larose et al. 2010; Rossetto et al.
2011; Planès et al. 2015). The decorrelation is defined as 1.0 − CC,
where CC is the correlation coefficient. This measurement is re-
lated to a combination of the changes in coda scattering and the

changes in coda arrival times but is still influenced by window size.
The maximum correlation coefficients from the windowed cross-
correlation, stretching and modified cross-correlation methods are
shown in Fig. 16, respectively. All three correlation methods shown
here are sensitive to the (de)correlation. However, we note that we
lack these data in the DTW method. Therefore, at the moment it
is unclear how DTW might aid this method, but it is worth further
investigation as others in seismic exploration have begun studying
amplitude warping in combination with time warping (Baek et al.
2014).

Finally, there are still aspects to DTW that need to be studied.
For one, the decrease in residual as a function of the b value looks
like a classic L-curve. It may be of use to study this parameter in
the context of Tikhonov regularization (see chapter 5 in Aster et al.
2005). Although Hale (2013) notes that b should not be thought
of as a regularization parameter, there is an interesting relationship
between the shape of the residual curve (e.g. Fig. 13c) and the fluctu-
ations in the τ/t estimates (e.g. Fig. 8b). It would also be interesting
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to study DTW in the context of finite bandwidth. Froment et al.
(2013) demonstrated novel results related to different τ estimates as
a function of frequency. Cycle skipping becomes even more severe
in narrow band data; DTW may be a useful tool to overcome such
problems when analyzing narrow-band data in relation to surface
wave depth sensitivity.

6.1 Computation costs

One aspect to consider when using these methods is the computa-
tional cost. If we take two traces having N samples and compute the
standard time-domain cross-correlation, the cost of this is O(N2).
If we window the two traces such that they have N1 samples and
slide this window one sample at a time through the traces we have a
computation cost of O(N × N 2

1 )—this is the cost of the windowed
cross-correlation method for N windows. In the case of the stretch-
ing method the cost can increase significantly. For each ε we test we
(1) interpolate one trace, (2) window and correlate with the refer-
ence trace, and (3) move to the next window and repeat. Fortunately,
in this case we are only interested in the zero-lag correlation so the
cost of correlation is O(N1). For M values of epsilon and neglecting
the interpolation step, the total cost of stretching is O(M × N × N1).
In the DTW algorithm, where we search over K lags, the com-
putation cost is the sum of the three operations: error estimation,
accumulation and backtracking. The cost of each is O(K × N), and
the total cost is O(3 × K × N).

One can see that depending on M, K, and N1, the methods have
distinct differences. We have neglected the interpolation step, and
we note that this can greatly vary the stretching computational
costs depending on the choice of interpolation scheme used. We
leave it for the user to decide which method is appropriate for their
given application, but we note in the study here that DTW and
windowed cross-correlation are similar in computation time and
that stretching takes much more time. In many cases, sliding the
window one sample at a time is overkill and, thus, N may be reduced
significantly. Furthermore, depending on the desired ε resolution,
M may be reduced, and K can be reduced in a similar way.

Lastly, we note two more factors impacting the computation costs.
First, the windowed cross-correlation cost can be reduced by im-
plementing the correlation in the frequency domain; the correlation
cost is then O(N1log N1). Secondly, a b > 1 value in DTW intro-
duces a multiplication factor O(b − 1) into the accumulation and
backtracking steps. For more information on the details of the com-
putation costs with changing step patterns, we refer the reader to
chapter 4 in Müller (2007) and the references therein. Specifically,
Section 4.3 covering multi-scale DTW may be of use to the read-
ers interested in computationally expensive task such as waveform
mining from continuous data.

6.2 Influence of source spectra

It is also worth considering the influence of changing source spec-
tra on the time shift estimates. For a zero-phase wavelet Zhan et al.
(2013) showed that the stretching method is sensitive to the source
spectra of u0 and u. Changing source spectra between u0 and u
leads to biased velocity perturbation estimates, and they speculate
that this is not the case for the windowed cross-correlation method.
Therefore, we conduct numerical tests with varying source spectra
and compare the three measurement methods. We note a difference
between our test and that of Zhan et al. (2013). We use a minimum
phase wavelet (e.g. chapter 2.2 in Yilmaz 2001), which is by defini-

tion casual. Zhan et al. (2013) use a zero-phase wavelet and do not
make remarks about the causality of their example.

We take the homogeneous background velocity model shown in
Fig. 1(c) and compute synthetics for Ricker source wavelets having
centre frequencies of 14.0 to 16.0 Hz at a 0.5 Hz interval. The direct
wave arrivals for the colocated source and receiver are shown in
Fig. 17(a), and the spectra are shown in Fig. 17(b). We analyze
the coda wavefield containing many arrivals coming from many
different directions and interfering with each other. For comparison
with the direct wave, we plot a section of the coda in Fig. 18(a) and
the corresponding spectra in Fig. 18(b). The change in the spectrum
due to the interfering waves is obvious. This is again different
from Zhan et al. (2013) who use a single arrival in their analysis.
Looking at the time domain wavefields in Figs 17(a) and 18(a), one
can see that the delay in the coda arrival follows the same delay as
in the direct wave (note the different time scales). Based on these
observations of the time-domain signals, we expect that all three
methods will estimate spurious velocity changes. Furthermore, if
these time delays remain constant over all lapse times, then we will
see a decrease in the velocity bias as we go to later lapse times in
the coda, as also found by Zhan et al. (2013).

In our analysis we take the 14 Hz source wavelet trace as u0 and
compare each of the other traces. The window length in the win-
dowed cross-correlation and stretching techniques is 1.5 s, which
is approximately 20 cycles. For the DTW we set b = 50, which
corresponds to a maximum velocity change of 2 per cent, and we
set τmax = 1.0 s. The lags τ estimated for each of the different
source frequencies are shown in Fig. 19. We see that the windowed
cross-correlation (a) and DTW (c) give very similar results. They
both give more or less a constant lag shift between the different
traces. What we see in the stretching method lags is completely
different, but actually understood. Looking back at Table 1, we see
that the consequence imposed by each method on the warping func-
tion s(t) describes what we see in the estimated lags in Fig. 19.
The warping function in the windowed cross-correlation method is
approximately constant for the different source spectra traces, as is
the DTW warping function. The stretch warping function follows a
linearly increasing function and then resets giving a sawtooth like
function.

If we look at the lag normalized velocity perturbations we can
make more interesting comparisons (Fig. 20). For the windowed
cross-correlation and DTW methods, we see a pattern in the velocity
bias similar to that found by Zhan et al. (2013). For the stretching
method we see a different pattern that follows the sawtooth pattern
in lags. In all three cases, the apparent velocity change decreases
with time, with the amplitude of the bias correlated to the difference
of the source spectra relative to u0. We conclude that in the case of a
minimum-phase source wavelet, all three methods are susceptible to
apparent velocity changes due to differing source spectra between
u0 and u.

7 C O N C LU S I O N

We present a comparison of three methods used to measure small
arrival time differences in coda signals caused by weak velocity
perturbations. Using an acoustic numerical experiment, we demon-
strate the assumptions and consequences inherent in each of the
three methods and show that a modification to the windowed cross-
correlation algorithm produces results comparable to the stretching
algorithm when the SNR is high. Each of the windowed methods
lacks data at the edges of the signal because each operates over
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Figure 17. (a) Zero-offset trace displaying the source wavelet. (b) Fourier spectra of traces in (a). The legend denotes the central frequency of the Ricker
wavelet, not the dominant frequency.

Figure 18. (a) Zero-offset trace displaying the coda from 1 s to 1.5 s. (b) Fourier spectra of traces in (a). The legend denotes the central frequency of the Ricker
wavelet, not the dominant frequency.

Figure 19. Lags τ measured with each of the three methods: (a) windowed cross-correlation, (b) stretching, and (c) DTW. Legend applies to all plots.

a window of data, and the result is assigned to the centre of that
window. We use the DTW method to overcome this lack of data
near the edges and suppress cycle skipping. After adding noise to
the synthetic data, such that the SNR of the coda was approximately
one, we show that DTW is considerably less susceptible to cycle

skipping, especially when the arrival time differences become large.
Lastly, we demonstrate that when the velocity perturbation is iso-
lated, thus only influencing part of the coda, the DTW method is
well suited to determine the location in time of the affected coda.
DTW is a new tool that may find new applications in seismology
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Figure 20. Time normalized lags τ/t measured with each of the three methods: (a) windowed cross-correlation, (b) stretching, and (c) DTW.

and other geophysical methods (e.g. as a waveform inversion misfit
function). Future studies will look into choosing the optimal b value
and amplitude warping.
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