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Summary

Imaging with seismic data is typically carried out under
the assumption of single scattering. Here we illustrate
a theory that includes multiply scattered waves in the
imaging process. We estimate artifacts in the image
caused by internal multiples rather than estimating the
multiples themselves in the data. The theory behind this
approach comes from a series derived from the Lippmann-
Schwinger equation and the Bremmer coupling series.
From this theory two images are formed, one with all
the data and the other with the estimated artifacts from
first-order internal multiples. The construction of the
second image requires knowledge of the velocity model
to the depth of the up to down reflection in the internal
multiple. We illustrate this theory with a synthetic data
example and examine the sensitivity of the method to
the velocity model.

Introduction

We develop an explicit scheme for modeling and imaging
with triply scattered waves, which can be extended
to higher order scattering by recursion. This scheme
is integrated in the downward continuation, or ‘wave-
equation’, approach to migration and estimates the
artifacts in the image caused by internal multiples, rather
than estimating the multiples themselves. We require
knowledge of the velocity model to the depth of the
shallowest reflector involved in the triple scattering. This
is implicitly the depth where the image is currently being
formed.

In our approach, we develop a hybrid series between the
Lippmann-Schwinger series [6] and the generalized Brem-
mer coupling series [3]. Both these series have been used
for SRME [1, 10], as well as for internal multiple attenu-
ation [10, 5, 8]. Our approach does not require the trav-
eltime monotonicity condition introduced by ten Kroode
[8], and can be used in the presence of caustics.

The scattering series

We model multiple scattering through a hybrid between
the generalized Bremmer and Lipmann-Schwinger series.
Let the components of U denote the up- and down-going
wave constituents and the subscript indicate how many
times the constituent has scattered, then

δU1(V̂ ) = D2
t L0(V̂ U0),

and δUm(V̂ ) = D2
t L0(V̂ δUm−1(V̂ )). (1)

Here V̂ represents a matrix of reflectivities, and L0 de-
notes the diagonal matrix of one-way propagators (or
Green’s functions) evaluated in the background velocity
model. Let R denote the restriction of the wavefield to
depth z = 0, and (H denotes the Hilbert transform in
time)

Q =
1

2

(
(Q∗

+)−1 −HQ+

(Q∗
−)−1 HQ−

)
(2)

represent the operator that decomposes the wavefield into
its up- and down-going constituents. We define M0 =
RQ−1L0. The data are then modeled as

δD =

(
d

∂zd

)
= −D2

t M0(V̂ (U0 +
∑
m∈N

(−1)m+1δUm(V̂ ))).

(3)
The leading order term on the right-hand side represents
the singly scattered or Born contribution. This contribu-
tion is written explicitly in terms of the propagator H of
the double-square-root (DSR) equation as

d1(s0, r0, t) = 1
4
D2

t Q∗
−,r0(0)Q∗

−,s0(0)

∫ ∞

0

dz1H(0, z)

Q−,r1(z1)Q−,s1(z1)(E1E2a)(z1, s1, r1, t0) , (4)

where

E1 : a′(z, x) �→ δ(r − s)a′(z, r+s
2

),

E2 : a(z, r, s) �→ δ(t)a(z, r, s),

while a = 2c−3
0 δc if c0 denotes the smooth background ve-

locity and δc denotes the velocity contrast. In the above,
we note that the propagator of the wave equation, G, is
related to the one-way propagators by G = Q∗

−G−Q− for
the up-going constituents. Together the E1 and E2 op-
erators represent the adjoint of the imagining condition;
they take an image and create from it data with t = 0
and s = r.

Inverse scattering

In inverse scattering the goal is to solve for V̂ in terms of
the data d (cf. (3)). We write the series

V̂ =
∑
m∈N

V̂m(d) (5)

subject to the following relation between the V̂m = V̂m(d),

− D2
t M0(V̂1U0) = δD

D2
t M0(V̂mU0) = D4

t M0(V̂m−1L0(V̂1U0)) m > 1. (6)

SPMUL 2.5

SEG/Houston 2005 Annual Meeting  2111

 

Downloaded 05 Nov 2011 to 72.93.188.223. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Artifacts due to Internal Multiples

From this it follows that

−D2
t M0(V̂ U0) = δD −

(∑
m∈N

D2
t M0(V̂mδU)

)
. (7)

If we ignore the second term on the right-hand side, the

problem of expressing V̂ in terms of the data reduces to
inverse scattering in the Born approximation [7]. The
single-scattering imaging procedure can be split into two
steps. First, from (4) the downward continuation to depth
z,

d̃1(z) = H(0, z)∗Q∗
−,s(0)−1Q∗

−,r(0)−1d , (8)

followed by application of the imaging condition

a1(z, .) = R1W
−1 ψ R2D

−2
t d̃1(z) (9)

where R1 = E∗
1 and R2 = E∗

2 are the usual imaging con-
ditions (t = 0 and h = 0), and W is directly related to
Q−,s(z)Q−,r(z). The pseudodifferential operator, ψ, ac-
counts for amplitude corrections [7]. We apply (8)-(9) to
(7), from which we obtain an image (first term on the
right-hand side) minus artifacts (second term).

Artifacts due to internal multiples in imaging

The estimation of artifacts in imaging from triply
scattered waves is obtained in the following way:

d
(a) ↓

a1(z., )
(d)← d̃1(z)

(b)→ d̃3(z)
(f)→ a3(z, .)

(c) ↓ ↓ (c)

d̃1(z + ∆z)
(+)→ d̃3(z + ∆z) .

� �

�

(e)

(a) We use (8) to estimate d̃1(z), the data downward
continued to the depth z.
(b) We estimate d̃3, the triply scattered data downward
continued to depth z given by

d̃3(z, s, r, t) = D2
t

∫∫
Q∗

−,s′(z)(E1a)(z, s′, r′)Q∗
−,r′(z)

d̃1(z, s′, r, ·) (t)∗ d̃1(z, s, r′, ·)ds′dr′ (10)

restricting d̃1 to t > 0; this equation is illustrated below

d̃1(z)
(t)∗ d̃1(z)

z
d̃3(z)→

.

Note the similarity between (10) and the SRME proce-
dure [4, 2, 9].

(c) We downward continue to the next depth, making use
of the relation

d3(s0, r0, t) = Q∗
−,r0(0)Q∗

−,s0(0)H(0, z)d̃3(z, .) . (11)

(d) We apply (9) to d̃1 to generate the image.

(e) The image estimated in (d) feeds back into the esti-
mation of the multiples; this appears as the (E1a)(z, s′, r′)
factor in (10).

(f) We estimate the artifacts in the image by applying

(9) to d̃3, i.e.,

a3(z, .) = R1W
−1 ψ R2D

−2
t d̃3(z) . (12)

The estimate of a3 can then be subtracted from the esti-
mate of a1 to form the final image estimate.

Lens Model

We illustrate the method with a synthetic data example.
The velocity model is shown in Figure 1 and consists
of a single layer beneath a low-velocity lens. The lens
is located in the center of the model; it is circular with
Gaussian velocity variations, a diameter of 600 m and
a maximum contrast of −2 km/s. Shot records were
generated at a spacing of 10 m from a lateral distance of
9 to 11 km, using finite difference modeling. We use a
double-square-root propagator that works in midpoint-
offset coordinates rather than shot and receiver. To
accommodate this choice, we use a subset of the available
offsets so that each midpoint has the same number of
offsets. The data from a midpoint of 9.8 km are shown
in Figure 2. The first arrival is highlighted in this figure
to show the triplications caused by the lens more clearly.

To estimate the multiple, we propagate the data to 2 km,
the top of the layer, and again show the cmp at midpoint
9.8 km in Figure 3 along with the estimated multiples at
this depth. Note that the caustic has been removed by
the propagation through the lens and that the multiple is
accurately estimated. Both the data and the estimated
multiples are propagated through the model, forming an
image at each depth step. Figure 4 compares the esti-
mated artifact with the artifact seen in the image; AGC
has been applied to highlight the artifact in the image.

To illustrate the dependence of this method on the back-
ground velocity model, we perturb the velocity and es-
timate the artifacts caused by internal multiples in the
incorrect velocity model. In theory, from equations (11)
and (12), knowledge of the velocity is necessary only to
the depth of the shallowest reflection, in this case the top
of the layer at 2 km depth. To test this we add a second
lens, with properties identical to the first lens, below the
layer. Because the perturbation depends on midpoint the
estimated multiple also depends on midpoint. Although
the estimated artifact does not match the image artifact
as well in this case as when the correct velocity is used,
the estimate remains quite good, as shown in Figure 5.
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Fig. 1: Velocity model consisting of a single layer beneath a
low-velocity lens.
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Fig. 2: Common midpoint gather at 9.8 km and zero depth,
with only the offsets used to compute the images shown later.
Note the triplications caused by the lens. Left: full gather.
Right: zoom of the primary reflection from the top layer.
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Fig. 3: Left: Common midpoint gather at 9.8 km and 2 km
depth, after the t ≤ 0 times have been removed. Note the dis-
appearance of the multi-pathing as the data are now below the
lens. The solid line shows the expected moveout curve for the
reflection from the bottom of the reflector. Right: estimated
multiples at this depth.
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Fig. 4: Top: Image with an artifact from the first-order internal
multiple at approximately 6 km depth. Bottom: Estimated
artifacts from first-order internal multiples.
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Fig. 5: In these images, a second lens has been added beneath
the layer to introduce a laterally varying velocity perturbation.
Top: Image with artifacts from internal multiples. Bottom:
Estimated artifacts from first-order internal multiples.

SPMUL 2.5

SEG/Houston 2005 Annual Meeting  2113

 

Downloaded 05 Nov 2011 to 72.93.188.223. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Artifacts due to Internal Multiples

0

2

4

6

8

de
pt

h 
(k

m
)

9.0 9.5 10.0 10.5
midpoint (km)

0

2

4

6

8

de
pt

h 
(k

m
)

9.0 9.5 10.0 10.5
midpoint (km)

Fig. 6: In this model the lens was moved 0.2 km deeper than
in the correct velocity model. Because this perturbation is
above the top of the layer, we expect this to have an impact
on the estimated multiple. Note the phase difference between
the estimated artifact and the image. Top: Image with arti-
facts from first-order internal multiples. Bottom: Estimated
artifacts from first-order internal multiples.

The theory presented here does require knowledge of the
velocity model to the depth of the up to down reflection
(top of layer at 2 km depth). To test the sensitivity of the
method to errors in this velocity, we move the lens 200 m
shallower than in the correct velocity model. In Figure 6,
we demonstrate that we can still estimate the multiple
with reasonable accuracy with this velocity perturbation.

Discussion

We have described a method to estimate imaging artifacts
caused by first-order internal multiples. This method re-
quires knowledge of the velocity model down to the top
of the layer that generates the multiple (the depth of the
up-to-down reflection). The main computational cost of
the algorithm comes from the downward continuation of
the data and the internal multiples. By estimating the
multiple on downward continued data, rather than in sur-
face data, we avoid difficulties caused by caustics in the
wavefield or the failure of the traveltime monotonicity as-
sumption. In addition, estimating artifacts in the image
rather than estimating multiples in the data shows clearly
which part of the image has been contaminated by inter-
nal multiples, even if those multiples are poorly estimated
or incompletely subtracted.

References

[1] F. Aminzadeh and J. M. Mendel. On the bremmer
series decomposition: Equivalence between two dif-
ferent approaches. Geophysical Prospecting, 28:71–
84, 1980.

[2] A. J. Berkhout and D. J. Verschuur. Estimation
of multiple scattering by iterative inversion, part I:
Theoretical considerations. Geophysics, 62(5):1586–
1595, 1997.

[3] M. V. de Hoop. Generalization of the Bremmer cou-
pling series. J. Math. Phys., 37:3246–3282, 1996.

[4] J. T. Fokkema and P. M. van den Berg. Seismic
applications of acoustic reciprocity. Elsevier, Ams-
terdam, 1993.

[5] H. Jakubowicz. Wave equation prediction and re-
moval of interbed multiples. In Expanded Abstracts,
pages 1527–1530. Soc. Explor. Geophys., 1998.

[6] B. A. Lippmann. Rearrangement collisions. Phys.
Rev., 102(1):264–268, 1956.

[7] C. C. Stolk and M. V. de Hoop. Seismic inverse
scattering in the downward continuation approach.
submitted to SIAM J. Appl. Math., 2005. CWP469P.

[8] A. P. E. ten Kroode. Prediction of internal multiples.
Wave Motion, 35:315–338, 2002.

[9] D. J. Verschuur and A. Berkhout. Estimation of mul-
tiple scattering by iterative inversion, part II: Prac-
tical aspects and examples. Geophysics, 62(5):1596–
1611, 1997.

[10] A. Weglein, F. A. Gasparotto, P. M. Carvalho, and
R. H. Stolt. An inverse-scattering series method for
attenuating multiples in seismic reflection data. Geo-
physics, 62:1975–1989, 1997.

Acknowledgments

We acknowledge the many useful discussions with Ken
Larner and Kris Innanen. This work was supported by
Total and the sponsors of the Consortium Project on
Seismic Inverse Methods for Complex Structures at the
Center for Wave Phenomena.

SPMUL 2.5

SEG/Houston 2005 Annual Meeting  2114

 

Downloaded 05 Nov 2011 to 72.93.188.223. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



EDITED REFERENCES 
 
Note: This reference list is a copy-edited version of the reference list submitted by the 
author. Reference lists for the 2005 SEG Technical Program Expanded Abstracts have 
been copy edited so that references provided with the online metadata for each paper will 
achieve a high degree of linking to cited sources that appear on the Web. 
 
Estimating imaging artifacts caused by internal multiples 
References 
Aminzadeh, F., and J. M. Mendel, 1980, On the bremmer series decomposition: 

Equivalence between two different approaches: Geophysical Prospecting, 28, 71-
84. 

Berkhout, A. J., and D. J. Verschuur, 1997, Estimation of multiple scattering by iterative 
inversion, part I: Theoretical considerations: Geophysics, 62, 1586-1595. 

de Hoop, M. V., 1996, Generalization of the Bremmer coupling series: Journal of 
Mathematical Physics, 37, 3246-3282. 

Fokkema, J. T., and P. M. van den Berg, 1993, Seismic applications of acoustic 
reciprocity: Elsevier. 

Jakubowicz, H., 1998, Wave equation prediction and removal of interbed multiples: 68th 
Annual International Meeting, SEG, Expanded Abstracts, 1527-1530. 

Lippmann, B. A., 1956, Rearrangement collisions: Physical Review, 102, 264-268. 
Stolk, C. C., and M. V. de Hoop, 2005, Seismic inverse scattering in the downward 

continuation approach: submitted to SIAM Journal on Applied Mathematics. 
ten Kroode, A. P. E., 2002, Prediction of internal multiples: Wave Motion, 35, 315-338. 
Verschuur, D. J., and A. Berkhout, 1997, Estimation of multiple scattering by iterative 

inversion, part II: Practical aspects and examples: Geophysics, 62, 1596-1611. 
Weglein, A., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt, 1997, An inverse-

scattering series method for attenuating multiples in seismic reflection data: 
Geophysics, 62, 1975-1989. 

 

Downloaded 05 Nov 2011 to 72.93.188.223. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/


