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Summary

Internal multiples have long been recognized as a prob-
lem in seismic imaging. Some theoretical developments
have been made to attenuate them, but there is no 3D
theory as yet that is valid for a wide range of velocity
models. The goal of this paper is to present such a
theory. Through the development of this theory we
show that, unless certain simplifying assumptions are
made about the velocity model, estimating multiples is
velocity-model-dependent. We propose estimating and
subtracting the multiples in the image domain rather
than the data domain. In common-image gathers, the
redundancy of well-corrected primaries can be exploited
to improve adaptive subtraction techniques.

Introduction

There are two distinct methods used to attenuate multi-
ples. The first is a signal processing approach in which
differences in moveout between primaries and multiples
are exploited to filter out multiples. The second is
a wave-theoretic approach in which the multiples are
modeled and then subtracted from the data. We present
an approach in the second category to attenuate internal
multiples.

Our approach is similar to that of Weglein et al. [8] and
ten Kroode [7], in that we express the multiples in terms
of the data through a series representation of the wave-
field in terms of the medium contrast. Our approach is
different in that we use a hybrid between the Lippmann-
Schwinger and Bremmer series instead of the Lippmann-
Schwinger series alone. The advantage of this approach
is that the Bremmer series allows the separation of the
wavefield into its up- and down-going constituents. This
allows the natural application of the restriction applied by
ten Kroode to ensure that the central scatter is shallower
than the two other scatters (i.e., z1 > z2 and z1 > z3 in
Fig. 2). Additionally, de Hoop [1] gives convergence esti-
mates on the Bremmer series, which do not exist for the
Lippmann-Schwinger series.

Our approach goes beyond the work of Weglein et al. [8],
and ten Kroode [7] in that where they considered one- and
two-dimensional media without caustics, our approach is
applicable in three dimensions in the presence of caustics.
Ten Kroode found that the Weglein et al. method of
attenuating multiples is independent of the velocity model
only if the traveltime increases monotonically with depth
as illustrated in Fig. 1. In moving beyond this assumption
we find that modeling multiples does require information
about the medium.
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Fig. 1: Illustration of the traveltime monotonicity assumption.
The assumption states that t1 < t2 if z1 < z2, where t1 is
the time along the ray-path from s to r1 and t2 is the time
along the ray-path from s to r2. This figure is modeled after
ten Kroode’s [7] Fig. 8.

We propose subtracting the multiples in the image do-
main rather than the data domain. It is easier to subtract
the multiples in the image domain because correctly im-
aged primaries are flat in common image gathers (CIGs).
Thus it is easier to differentiate between primaries and
multiples in this domain. Ways to exploit this in a signal-
processing framework are discussed by Sava and Guit-
ton [4]. This redundancy will also allow more freedom
in the adaptive subtraction phase of multiple attenua-
tion. Adaptive subtraction compensates for differences in
illumination between multiples and primaries as well as
amplitude errors in multiple estimation.

Inverse Lippmann-Schwinger-Bremmer Series

We derive both a forward (image 7→ data) and an inverse
(data 7→ image) series representation using a hybrid
between the Lippmann-Schwinger and Bremmer series
approaches. The hybrid series uses the directional
decomposition of the Bremmer series, along with the
Lippmann-Schwinger medium decomposition into a
known, smooth reference and unknown, singular per-
turbation. This allows us to trace waves through their
up and down scatters while still preserving the contrast
source formulation of the Lippmann-Schwinger construc-
tion. From the third term of the forward series, we model
the triply scattered data and from the third term of the
inverse series we estimate the third-order (in the data)
contribution to the image.

The expression for the first and third terms in the inverse
series is

V1 + V3 = M(d− L(V1L(V1L(V1U0))) , (1)

where V =
∑
Vj is the medium contrast, M is an imag-

ing/migration operator, and d is the recorded data. The
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Fig. 2: Triple scattering notations and conventions. The quan-
tity sj is the source location at the zj depth level, and rj is the
receiver location at zj . In this figure, the imaging condition
has been not applied at each depth level, thus sj and rj are
not equal.

quantity V1 = M(d) is the first-order approximation to
the medium contrast,

L =

(
G+ 0
0 G−

)
,

is the matrix of up- and down-going Green functions (G+

and G− are the up- and down-going Green functions re-
spectively) and U0 is the wavefield in the background
model. The structure of (1) is like that of Lippmann-
Schwinger; however the operators L, V1, V3 and M come
from the Bremmer series rather than from Lippmann-
Schwinger. As is the case in the standard Lippmann-
Schwinger formulation, we use that L(V1L(V1L(V1U0))) =
L(V3U0), where V3 is the third order, in the data, contri-
bution to the medium contrast.

Internal Multiples

To make use of the formalism introduced in (1), we need
to construct two images, one from the data d and the
other from an estimate of the triply scattered data
d3 = L(V3U0). The d3 data set is not directly available,
and so must be estimated from the available data. We
use the downward-continuation approach to carry out
this step.

To model the internal multiple data set d3, we first require
a method of modeling primaries. Using the downward-
continuation approach, we model singly scattered data,
following Stolk and de Hoop [5], via

d1(s, r, t) = 1
4
D2
tQ
∗
r(0)Q∗s(0)

∫ ∞

0

dz1H(0, z1)

Qr1(z1)Qs1(z1)(E1E2a)(z1, s1, r1, t1) , (2)

where d1 is the singly scattered data, at source s, re-
ceiver r, and time t and Dt = i∂t. We denote by H(0, z1)
the flux-normalized propagator of the double-square-root
equation, which propagates the wavefield from the depth
z1 to 0. The Q operators diagonalize the wave equation,
written as a first-order system [5]; ∗ denotes an operator

adjoint. These operators influence the amplitudes but not
the traveltimes of arriving waves. The medium contrast
a = δc/c30 is mapped to data at time zero, with coincident
source and receiver positions, through the E1 and E2 op-
erators. These operators apply the adjoint of the imaging
condition, mapping the image to data at time zero, with
coincident source and receiver positions. The notation is
illustrated in Fig. 2.

From these modeled data, we construct two other pseudo-
data-sets that model some portion of the wavefield. First
we have

d′1(z1, s, r, t) = D2
tQ
∗
s(0)Q∗r(0)H(0, z1)

Qs1 (z1)Qr1(z1)(E1E2a)(z1, s1, r1, t1) , (3)

which are data generated by a particular layer, z1, in the
subsurface. Second, we construct

d1(z1; s, r, t) =

∫ ∞

z1

dzd′1(z, s, r, t) (4)

= d1(s, r, t)−
∫ z1

0

dzd′1(z, s, r, t) , (5)

which is data scattered strictly below the depth z1. We
also have the relation

H(z1, 0)d1(s, r, t) = H(z1, 0)d1(z1; s, r, t) , (6)

i.e., after downward continuing the data to the depth z1,
d1 and d1 are the same.

With the above definitions, we can model internal multi-
ples via

d3(s, r, t) =

∫ ∞

0

dz1

∫
ds′
∫

dr′
∫

R+

dt′Q∗s′(0)−1Q∗r′(0)−1

d′1(z1, s
′, r′, t′)Q∗s′(0)−1Q∗r′(0)−1

∫

R+

dt1 d1(z1; s′, r, t+ t′ − t1)d1(z1; s, r′, t1) ; (7)

the different time variables pertain to the paths illustrated
in Fig. 2; s′ and r′ are the surface positions of the data
continued from the central scattering point to the sur-
face, also illustrated in Fig. 2. This is just one of several
equivalent methods of estimating d3. In whichever way it
is modeled, d3 has errors of order higher than 3. These
errors could be corrected by computing d5, which models
contributions from second-order internal multiples, result-
ing in errors of order higher than 5.

To construct both d1 and d′1, knowledge of the velocity
model is required down to the depth z1. This knowledge is
required to either model data from this depth to construct
d′1 and d1 through (5), or to downward continue the data
d1 to the depth z1 as in (6). If the traveltime monotonicity
assumption of ten Kroode [7] is satisfied, this modeling
can be replaced by a time-windowing procedure applied
to the data. The condition results from the requirement
that the z2 and z3 depth levels are deeper than the z1
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level. Ten Kroode’s traveltime monotonicity assumption
allows this condition on the depth to be replaced by a
relation between the traveltimes of the three data sets.
In this case, d1 becomes independent of z1, and the z1

integral can be combined with d′1, giving d1.

Inverse Scattering

Subtracting multiples in the data domain is difficult for
a number of reasons. For example, in the data domain
events coming from different regions of the subsurface are
difficult to separate. Thus, removing multiples becomes
more challenging since the multiple energy is mixed with
several different events. In contrast, correctly imaged pri-
maries appear flat in CIGs. Multiples, since they are not
imaged correctly, will show residual moveout in CIGs. We
propose a wave-theoretic approach to estimate the contri-
bution of multiples in the image domain.

From the series representation given in (1), we find that
the contribution to the image made by multiples can be
computed by applying the single-scattering migration op-
erator to the triply scattered data. Replacing the operator
M in (1) with either the wave-equation migration oper-
ator, MWE, or the wave-equation angle transform, AWE,
[6] we find the first- and third-order contributions to the
image via

〈a1〉(x, z) = MWEd (8)

〈a3〉(x, z) = MWE〈d3〉 (9)

〈〈a1〉〉(x, z, p) = AWEd (10)

〈〈a3〉〉(x, z, p) = AWE〈d3〉 , (11)

where p is the slowness, a1 is the first-order estimate of
the image and a3 the third order estimate. (The medium
contrast V in (1) is a function of both a and the Q op-
erators introduced in the previous section.) The angle
brackets denote that these quantities are estimates. To
obtain a final image, we need to combine the first- and
third-order estimates. The series construction (1) shows
that this is done through a subtraction,

〈〈a〉〉 = 〈〈a1〉〉 − 〈〈a3〉〉
〈a〉 = 〈a1〉 − 〈a3〉 . (12)

Procedure

We could use the theory described here in several ways to
develop an algorithm to attenuate multiples. These dif-
ferent methods go along with the different possible repre-
sentations of (7). We discuss only one of these methods
here, summarized by the following flowchart. We assume
that a first-order estimate of the image 〈〈a1〉〉 from (10)
or of 〈a1〉 from (8) is available. We use also that d, the
field data, are a first order approximation to d1, the singly
scattered data.

estimate for a3 from that for a1

estimate a by subtracting the

or

using the approximation d ≈ d1

compute 〈d3〉 with (7)

compute d using (5)

compute 〈a3〉 with (9)

compute 〈〈a3〉〉 with (11)

compute d′ with (3)

The most difficult portion of this procedure is in the
estimation of d′, and from it d. This step also illus-
trates that if the traveltime monotonicity assumption of
ten Kroode is not satisfied, estimating internal multiples
requires knowledge of the velocity model to the depth z1.
Since the location of this layer in the subsurface is not
generally known, this means the entire velocity model
must be known with enough accuracy to propagate the
wavefield through it.

The final step in the algorithm involves differencing two
image estimates. In this differencing procedure it is also
necessary to compensate for the fact that the contrast at a
given position (x, z) is illuminated differently by multiples
than it is by primaries. Thus, even if we were able to esti-
mate the amplitudes of the multiples without error there
would still be differences between the multiples estimated
from the primary data and the true multiples. Because of
this, the subtraction must be done in an adaptive manner
such as that suggested by Guitton and Verschuur [2].

Fig. 3(a) illustrates the construction of the third order
data, 〈d3〉, from three singly scattered data points. In the
construction of 〈〈a3〉〉, these data contribute to the single
scattering isochron with the same source position, receiver
position and total traveltime (dashed curve), rather than
the three partial time single scattering isochrons (solid
curves). The estimate 〈〈a1〉〉 also puts a contribution from
these rays onto the dashed isochron. The subtraction
of 〈〈a3〉〉 from 〈〈a1〉〉, removes this incorrect contribution.
Also in this plot, a set of rays are shown (dot-dash line)
which, due to their identical source-receiver positions and
slopes, are difficult to separate in data space. Such kine-
matically analogous contributions [3] will not pose a prob-
lem; the subtraction will result in an amplitude correc-
tion.

Figs. 3(b)-(d) illustrate the triple scattering isochron.
The three plots together show the set of points which
could contribute to a particular point, d3(s, r, t), in the
triply scattered data. Each plot shows the contribution
from only one of the three scattering points contributing
to the multiple, along with the single scattering isochron
(dashed-line) corresponding to the time t illustrated in
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Fig. 3: Isochron construction and triple scattering isochron. In (a), the construction of triply scattered data from singly
scattered data is illustrated. The three smaller isochrons are the single scattering isochrons for the three scattering points.
The dashed line is the single scattering isochron for the total time t (illustrated in Fig. 2). Also illustrated in this plot is a
contribution indistinguishable from the primary contribution, the rays for which are shown with dot-dashed lines. Plots (b)-(d)
show the triple scattering isochron. In (b), only the points from the (z2, s2, r2) are shown. In (c), only the points from the
(z3, s3, r3) scattering point are shown. In (d), the (z1, s1, r1) scattering points are shown, although only 1/50 of the number of
points in the other plots are shown here. The dashed line is the single scattering isochron for the total traveltime t.

Fig. 2. The points in (b), which cluster along lines, are
from the first scattering point at (z2, s2, r2). The points
in (c) are from the third scattering point at (z3, s3, r3).
These two plots are mirror images of one another because
of reciprocity (interchanging s and r exchanges the first
and third scattering points). The spacing between the
lines (and between points on them) is governed by the
time step used in the computation. In (d), the points
from the second scattering point, at (z1, s1, r1) are shown.
These points do not cluster along lines as did those in (b)
and (c). The three plots together show that while singly
scattered data at a single source, receiver, and time sam-
ple the subsurface along an ellipse, triply scattered data
at the same source, receiver, and time sample the entire
interior of the same ellipse.

Discussion

We present a theory for the suppression of internal mul-
tiples. This theory goes beyond previous theories in
that it allows for more general velocity models and is
valid in 3D. Our theory, however, relies on knowledge
of the velocity model. We suggest suppressing multiples
in the image domain rather than the data domain, for
two reasons. First, the redundancy in the data makes
multiples easier to distinguish in CIGs than in common-
shot or common-offset gathers. Second, when estimating
multiples in the image domain the multiples need not
be modeled to the surface, reducing computation time.
Although our method depends on the velocity model,
with this dependence we are able to model multiples from
all depths and thus remove the requirement of selecting a
particular multiple-generating horizon in the data before
processing. Even if this horizon is known, with our
method computing the multiples generated from a region
surrounding this horizon is straightforward. Doing this
will reduce errors in the estimated multiples caused by
errors in picking the horizon.
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