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Summary

Dip moveout (DMO) and azimuth moveout (AMO) are
considered in a general framework that allows for lateral
variations in the velocity model, including those which
generate caustics in the wavefield. DMO and AMO are
constructed through the composition of operators, using
the scattering angle and azimuth parameterization. In
this parameterization, impulse responses are computed
in a gaussian gas lens model. Because of the different
parameterization, these impulse responses are somewhat
different than those shown traditionally. The results
clearly show how errors can be introduced by assuming,
for example, a constant velocity-gradient model when
the true model is laterally heterogeneous.

Introduction

Traditional partial stacking operators, such as DMO and
AMO, are applied to data sets using a constant velocity
(or constant vertical velocity-gradient) model. This is
done, on the one hand, because the methods are derived
in constant media, and on the other hand, to make the
algorithms that apply DMO or AMO to data simpler
and more efficient.

In more complex media DMO and AMO, as derived in
constant media, cannot be applied because of caustics in
the wavefield. Even a small heterogeneity can change the
rayfield enough that applying constant-medium DMO or
AMO to a data set in several different windows will not
avoid errors. Figure 1 shows the complex ray structures
that can arise in laterally heterogeneous media.

The transformation-to-zero-offset (TZO) operator is
equivalent to applying DMO across an entire data set.
This operator is the composition of an imaging Gen-
eralized Radon Transform (GRT) [4] and an exploding
reflector-modeling operator that includes only the portion
of the wavefield from a raypath normal to the reflector.
By composing two operators we generate a single oper-
ator that has the same result as applying the operators
one after another.

The transformation-to-common-azimuth (TCA) opera-
tor, which is AMO applied over an entire data set, is
the composition of three operators. We model the data
using the composition of two of these operators, the first
of which models all data and the second of which restricts
the first to constant azimuth acquisition. This combined
operator is then composed with an imaging GRT. The
composition of all three operators results in a mapping
from an initial data set into a constant-azimuth data set.
We determine conditions under which this operator is im-
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Fig. 1: Depth section showing a model that contains a low-
velocity lens, which greatly distorts the rayfield. The white
rays come from the outer branch of the isochron (shown in
Figure 5) and the black rays come from the inner branches.
(Darker shading indicates higher velocity.) The two plots show
slightly different regions of the model; both plots use the same
source position and scattering angle.

age preserving, i.e., when reflector locations are preserved
in the output image.

We develop a framework for analyzing the sensitivity
of DMO/AMO with respect to changes in the velocity
model. This framework allows one to study the error in
applying DMO/AMO in a simplified (typically constant
vertical-gradient) velocity model if the true velocity model
were to have (strong) lateral variations. These errors will
in general be significant since even a small, localized, lat-
eral velocity variation will introduce caustics in the wave-
field.

DMO/AMO effectively corresponds to partial stacking,
which ideally leads to consistent imaging of reduced (zero-
offset or common-azimuth) data sets (computationally ef-
ficient because the width of the singular support of the
DMO/AMO distribution kernel is small). Conditions un-
der which this imaging is consistent (reflector locations
preserved) depend on the properties of the rayfield. It is
important to note that rather than extracting a reduced
dataset from the entire dataset, DMO/AMO will enhance
the signal-to-noise ratio by using all available data in the
reduction, exploiting any redundancy in the data.

DMO can also be employed as a tool for velocity analysis.
By composing inverse DMO with DMO in a perturbed
version of the velocity model it is possible to estimate the
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degree of inconsistency introduced by assuming lateral
invariability of the model (residual-velocity DMO [1]).

AMO (as defined in [2]) can be employed to carry out ap-
proximate (based on a linearized scattering model) data
continuation. Future directions for this work include in-
vestigations into using AMO (or similar operators) for
data regularization.

Methodology

Since we consider general velocity models that allow for
lateral variations, traditional methods of deriving the
necessary operators are insufficient. We use the methods
of microlocal analysis to define operators that map our
data from one source-receiver configuration to another
(e.g., from finite offset to zero offset for DMO).

We construct both the TZO and TCA operators in three
steps. First we map data from the acquisition surface to
the subsurface. We do this using the angle parameteriza-
tion and GRT. This allows a model of the subsurface to
be constructed from the input data.

Second, we model the desired output data. At this stage
we must also ensure that this operator is image preserv-
ing, which means that it maps each point in the subsur-
face to a single point in the data image. If this condition
is not met, artifacts may be introduced in the final data.

Finally we must determine whether or not it is possible to
compose the two operators and obtain the desired output
data. We need to be able to do this in such a way that
the information contained in the original data, i.e. the
location of reflectors, is preserved in the output data.

In general, both AMO and DMO take as input only a
subset of the entire data set. In constant-medium DMO
for example, DMO is applied to common-offset data. This
restriction of the data to a particular subset generates
artifacts in the resulting image. These artifacts can be
predicted and filtered out using our methodology. In our
parameterization we no longer use as input common-offset
data but rather constant-scattering-angle data. Although
this is a different subset of the full data set it still retains
the same dimensionality as common-offset data.

This same methodology of composing operators can be
applied more generally to data regularization, allowing
accurate interpolation of missing data in complex media.

Examples

DMO

Traditionally DMO is derived through Fourier methods
or using the method of stationary phase [5]. Since we
wish to include more general media in our computations
we require a more general framework.

The actual TZO operation requires the exploding-
reflector modeling operator to be applied to data after the
GRT imaging operator discussed above. For the output
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Fig. 2: Notation for the derivation of the constant-medium
impulse response. Black lines are rays, the dashed white line
is the zero-offset isochron, the solid white line is the angle
isochron. The DMO operator maps from the solid isochron to
the dashed one.

data from this process to be useful, however, the loca-
tions of the reflectors, as seen by the original data, must
be preserved. We determine conditions under which this
is possible, allowing us to expand the class of models on
which TZO can be applied from those with only vertical
changes to some containing lateral heterogeneities. These
conditions are important to ensure that the output data
are accurate. In order to ensure that the resultant im-
age is free of artifacts, however, further filtering would be
required.

Under the constant-velocity assumption, DMO is applied
to common offset-data, with zero-offset data as the de-
sired output. Since we use the angle parameterization we
must find analogous quantities to those used tradition-
ally. We use the source position, scattering angle (ϑ in
Figure 2) and traveltime in the angle parameterization in
place of the midpoint, offset, and traveltime, respectively.
Thus to compute the TZO impulse response in the an-
gle domain we fix the source position, scattering angle,
and traveltime. It is also interesting to note that, us-
ing this more general framework, the problems associated
with 3D DMO ([3] p326) disappear because the tradi-
tional parameterization of 3D DMO is not well defined in
this case. Using the notation defined in Figure 2 one can
derive analytically this impulse response for a constant
velocity medium, using the law of sines. The resulting
relationships are:

tzo = t sin(α) sin(φ)
(sin(α)+sin(φ)) sin(ψ)

dzo =
ct sin(φ) sin( θ

2 )

(sin(α)+sin(φ)) sin(ψ)
.

Figure 3 shows the impulse response derived above; tzo

is plotted as a function of dzo to match, as closely as
possible, the impulse response shown traditionally.

In media with lateral heterogeneities, the impulse re-
sponse is no longer single valued, as shown in Figure 4,
but contains triplications and additional branches. The
original structure of the constant medium is visible in this
model (note the differences in scale between Figures 3 and
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Fig. 3: DMO impulse response for constant-velocity model
(c=1700 m/s), as derived above (scattering angle 45◦; time
2 s)
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Fig. 4: DMO impulse response for the lens model. The same
structures as the constant case are still present but with distor-
tions and additions caused by the lens. The lens model consists
of a vertical velocity gradient, beginning at 1700 m/s, and a
low velocity lens.

4) but it has been greatly distorted by the presence of the
lens. The model used in these figures is the lens model
discussed in [4] and consists of a constant vertical veloc-
ity gradient with a low velocity ‘gas’ lens. The model is
shown in Figure 5.

In Figure 5 it is easy to see where errors can arise. If
a constant-gradient DMO were applied to data collected
over an Earth that looks more like the lens model than
a constant-gradient model, the depth point from which
the zero-offset ray originates would be on the solid line
rather than the dashed one. In the region below and to
the left of the lens, this will result in a large traveltime er-
ror since the two lines are relatively far apart. Even after
DMO has been incorrectly applied, however, it is possi-
ble to reapply a small residual DMO operator, similar to
[1], that will undo the initial DMO application and apply
a new DMO with lateral variations taken into account.
Much of the intermediate computations can be avoided
by first computing a combined inverse/forward DMO op-
erator for the particular situation and then applying the
smaller resulting operator to the data.

AMO

The AMO case is quite similar to the DMO case; how-
ever, since AMO is inherently 3D while DMO is easily
reduced to 2D, the resulting analysis is somewhat more
complex.
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Fig. 5: Angle isochron (source location 4300 m, scattering an-
gle 45◦, and time 2 s). The white line shows the isochron
from the lens model, and the dashed line is computed in the
constant-gradient model with the lens removed. The lens
model is shown in the background; darker color indicates
higher velocity.

Fig. 6: Illustration of the AMO operator. AMO maps from one
isochron to the other by matching points and tangent planes.
This figure is similar to Figure 2 in that it shows two isochrons
between which the AMO operator maps. The darker isochron
is the input isochron and the lighter is the output isochron.
The sphere (marked with an arrow) is the point at which the
isochrons cross and their tangent planes match.

In translating AMO to the angle domain, we now require
a variable to take the place of azimuth in the traditional
parameterization (the third dimension). This role is filled
by the azimuthal angle between the source and receiver
ray directions.

The impulse response and the 3D isochrons will again look
different in the angle domain than in the midpoint-offset
domain (the impulse response in the midpoint-offset do-
main is shown in [2]). The isochron in the angle domain
shows a shape similar to that in the DMO case, with the
expected extension to 3D. Figure 6 shows the construction
of the AMO operator as a mapping from one isochron to
another in the angle domain. In [2] the AMO impulse re-
sponse was shown to have a saddle structure, and Figure 7
shows that the structure in the angle domain is somewhat
similar. It is once again possible to compute the impulse
response analytically in a constant model; however, this
computation is more complex so only the resulting figures
are shown here.

Once again the gaussian lens introduces complications
in the structures of both the impulse response and the
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Fig. 7: Plot of the impulse response as a function of input ray
directions for AMO; phi is the angle below the surface, and psi
is the surface azimuthal angle of the source ray.
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Fig. 8: Surface of the impulse response in the lens model (com-
pare to Figure 7). The lens has again introduced triplications
on the surface. Each point on the impulse response is shown
here because the triplications present in the lens model are
more difficult to see on an interpolated surface.
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Fig. 9: Surface of the isochron in the lens (compare to Figure
6). Again each point is plotted rather than an interpolated
surface.

isochron. These surfaces are shown in Figures 8 and
9. For both, the impulse response (Figure 8) and the
isochron, (Figure 9) the lens introduces a multivaluedness
to the surfaces as well as distorts the original shape. For
both DMO and AMO, the lens also increases the range
of the output time and the depth of the isochron. This
is mainly due to the vertical gradient, which introduces
turning rays into the rayfield that travel for a much larger
time than do the straight rays where velocity is constant.

Conclusions

When applying TZO or TCA to a data set it is important
to understand the effects of lateral variations in the Earth
on the computed output data. The impulse responses
shown in this abstract indicate clearly that lateral
variations can result in large errors in the positioning
of the scattering point from which the output data set
is computed. This is equivalent to a large error in the
reflector position because the scattering point is assumed
to be on a reflector.

Although artifacts generated in the DMO/AMO process
will be less of an issue when the transformation is applied
over a complete data set, in order to avoid any artifacts
at all it is necessary to use as input data a small range of
scattering angles. This range allows the design of a filter
to remove artifacts from the final image.

Since AMO/DMO are currently used as tools in regular-
izing and resampling data, an obvious extension of this
work is to investigate data continuation and conditions
under which it can be carried out.

Acknowledgements

This work was supported by the sponsors of the Consor-
tium Project on Seismic Inverse Methods for Complex
Structures at the Center for Wave Phenomena.

References

[1] T. Alkhalifah and M.V. de Hoop. Velocity residual
dip moveout correction. CWP-350-P, 2001.

[2] B. Biondi, S. Fomel, and N. Chemingui. Az-
imuth moveout for 3-d prestack imaging. Geophysics,
63:574–588, 1998.

[3] N. Bleistein, J.K. Cohen, and J.W. Stockwell Jr.
Mathematics of Multidimensional Seismic Imaging,
Migration and Inversion. Springer-Verlag, New York,
2000.

[4] M.V. De Hoop and S. Brandsberg-Dahl. Maslov
asymptotic extension of generalized radon transform
inversion in anisotropic elastic media: a least squares
approach. Inverse Problems, 16:519–562, 2000.

[5] D. Hale. Dip Moveout Processing, volume 4 of Course
Notes Series. Society of Exploration Geophysicists,
Tulsa, 1991.

SEG Int'l Exposition and 72nd Annual Meeting  *  Salt Lake City, Utah  *  October 6-11, 2002
Downloaded 05 Nov 2011 to 72.93.188.223. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/


