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Abstract
Imaging with seismic data is typically done under the assumption of single
scattering. Here we formulate a theory that includes multiply scattered waves in
the imaging process. We develop both a forward and an inverse scattering series
derived from the Lippmann–Schwinger equation and the Bremmer coupling
series. We estimate leading-order internal multiples explicitly using the third
term of the forward series. From the inverse series, two images are constructed,
one formed with all the data, the other with the estimated leading-order internal
multiples; the final image is formed from the difference of these two images.
We combine the modelling of the leading-order internal multiples with the
construction of the second image resulting in one two-part imaging procedure.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A seismic experiment is typically modelled as a set of sources at the Earth surface that generate
waves that are reflected once from medium discontinuities in the subsurface and recorded at
a set of receivers again located on the surface. The goal of this paper is to move beyond the
single-reflection assumption to allow for multiply scattered waves. We consider only scalar
waves and assume that the sources and receivers are on the same horizontal surface. A finite
collection of scatterers with a separation large compared to the wavelength is also assumed.

Fokkema and van den Berg [14] developed a rigorous theory for the suppression of
surface-related multiples. A surface-related multiple is a wave that has been reflected at least
three times, with at least one reflection at the surface. Their analysis is derived from the
reciprocity theorem in integral form and results in a Neumann series representation to predict
surface-related multiples. If assumptions allowing the construction of data at zero offset, such
as those given by de Hoop et al [12] are satisfied, then, in theory, Fokkema and van den
Berg’s theory solves the surface-related multiple attenuation problem. This paper provides a
theory for the suppression of leading-order internal multiples, which are waves that have been
reflected three times with no reflections from the Earth’s surface.
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The work presented here is motivated by the series solutions to inverse scattering problems
developed by Moses [28], Prosser [29] and Razavy [30], as well as the Bremmer series
approach to multiple attenuation discussed by Aminzadeh [2]. Moses constructed a series
to represent the quantum scattering potential in terms of measured reflection coefficients.
Prosser discusses this methodology from the algorithm construction viewpoint and touches on
convergence issues. Razavy extends this work to recovering the velocity from the reflection
coefficient via the scalar wave equation. These three papers use the Lippmann–Schwinger
series [26], which is a pair of series for the forward and inverse scattering problem. This
series representation has been used in exploration seismology by Weglein et al [42, 41]. The
Bremmer series was introduced by Bremmer [6] to solve the wave equation in a horizontally
layered medium. The convergence of this one-dimensional series is discussed by Atkinson
[3] and Gray [17]. Aminzadeh used the Bremmer series to model the seismic wavefield [1]
and construct filters to attenuate surface-related multiples [2], both in horizontally layered
media. The Bremmer series was extended to two-dimensional problems by Corones [10];
the convergence of this series is discussed by McMaken [27]. De Hoop [11] introduces
a generalization of the Bremmer series to multi-dimensional laterally varying media. This
generalization is a Neumann series for forward scattering, which motivates its use here.

From these two series, we develop a hybrid series that uses the directional decomposition
(into up- and down-going constituents) of the Bremmer series along with the Lippmann–
Schwinger medium decomposition into a known, smooth reference velocity model and
unknown, singular perturbation or contrast. Using this hybrid series allows us to trace waves
through their up and down scatters while still preserving the contrast-source formulation of
the Lippmann–Schwinger construction.

We develop an explicit scheme for modelling and imaging with the triply scattered wave
constituent that can be extended to higher-order scattering. This triple scattering scheme is
naturally integrated in the downward continuation approach to inverse scattering in the Born
approximation. This scheme requires knowledge of the velocity model only to the depth of
the shallowest reflector involved in the triple scattering.

In reflection seismology, two distinct methods have been used to attenuate multiples to
obtain an approximation of singly scattered data. The first predicts the triply scattered data and
then subtracts them from the data set. The second filters out multiples, using filters designed
to exploit the differences in moveout (change in arrival time with source–receiver separation)
between primaries and multiples. The work discussed in this paper falls into the first category.

In the prediction approach, Kennett [22, 24] used the Thomson–Haskell [25] method
in horizontally layered media to model synthetic seismograms containing both surface and
internal multiples. In [23], he uses this theory to suppress surface-related multiples in plane-
layered elastic media. There are several extensions of the surface-related multiple attenuation
theory of Fokkema and van den Berg [14] to internal multiples [15, 4, 40, 39]. In these
methods, a particular layer is identified as the multiple generator (i.e. the layer where the
second reflection occurs) and the surface-related multiple attenuation is adapted to be applied
at that layer. Dragoset and Jeričević give a practical algorithm for attenuating surface-related
multiples in [13]; an algorithm such as that discussed by Dragoset and Jeričević could be
used for internal multiples in any of the mentioned extensions. Weglein and others [42]
have used the Lippmann–Schwinger series to model and process seismic data, including the
suppression of both surface-related and internal multiples, without knowledge of the velocity
model. In ten Kroode [38] the mathematical theory behind that approach is given in both one
and two dimensions. He shows that internal multiples can be estimated without knowledge
of the velocity model if the velocity model satisfies two conditions: ten Kroode’s travel-time
monotonicity assumption (this condition is described in appendix B), and the condition that
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the wavefield contains no caustics. When the two assumptions of ten Kroode are satisfied,
our method can be rewritten in a form consistent with the method of Weglein et al [42];
this is discussed further in appendix B. Jakubowicz [20] proposes a method for modelling
internal multiples by correlating one primary reflection with the convolution of two other
primary reflections; his approach implicitly uses the Bremmer series and is similar to the work
presented here under ten Kroode’s travel-time monotonicity assumption. Kelamis et al [21]
use an approach similar to that of Jakubowicz, in which the multiples are constructed from a
combination of different data sets, both at the surface and in the subsurface. In any method
that predicts internal multiples and subtracts them, an adaptive subtraction technique such as
that suggested by Guitton [18] must be used.

Aside from reflection seismology, there are other applications in which multiply scattered
waves are important. In earthquake seismology, Burdick and Orcutt [7] investigate the
truncation of the generalized ray sum, from which they find earth models in which the
inclusion of internal multiples becomes important. In [31], Revenaugh and Jordan observe
both internal and surface-related multiples and use them to estimate the attenuation quality
factor, Q, of the mantle. In [32, 33], the same authors use multiples to investigate layering in
the mantle. Bostock et al [5] use incident teleseismic P-waves scattered from a free surface
and then subsurface structure before being recorded in an inversion scheme in which the
teleseismic P-wave coda is used to invert for subsurface structure. For synthetic aperture radar
(SAR) data, Cheney and Borden [8] derive a theory to relate the singular structure (wavefront
set) of the object to the singular structure of the multiply scattered data.

In the next section we describe the techniques of the directional decomposition used in
the Bremmer series. In the third section, we describe some of the details of the construction of
one-way Green functions. This is followed by a description of the contrast-source method used
for the Lippmann–Schwinger series. In the fifth section, we construct the hybrid series. In the
sixth section we use the hybrid series to model data, giving the first of our three main results in
(83). The proof of this result is given in appendix A. Following this, we summarize a method
of constructing an inverse to the modelling operator. We then describe, through a series of
results in section 8, a method for estimating artefacts in the image caused by leading-order
internal multiples. Appendix B shows the correspondence between the theory described here
and that of ten Kroode [38] and Weglein [42] under certain assumptions.

2. Directional decomposition

In the Bremmer series formulation of scattering, the wavefield is split into up- and down-
going constituents. This is done by separating the vertical, z, derivative from the horizontal,
x, derivatives, and then writing the wave equation as a first-order system of partial differential
equations in z. This system is then diagonalized completing the separation into up- and
down-going constituents. We begin with the scalar acoustic wave equation−c(z, x)−2D2

t +
n−1∑
j=1

D2
xj

− ∂2
z

 u = f, (1)

where x1, . . . , xn−1 denote the horizontal coordinates and Dxj
≡ −i∂xj

,Dt ≡ −i∂t ; c(z, x) is
the isotropic velocity function and f is a source density of injection rate. These equations do
not account for attenuation in the medium. We write the wave equation as

∂z

(
u

∂zu

)
=

(
0 1

−A(z, x,Dx,Dt) 0

) (
u

∂zu

)
+

(
0

−f

)
, (2)
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where A is the transverse ‘Helmholtz’ operator, with symbol1 A(z, x, ξ, τ ) = c(z, x)−2τ 2 −
‖ξ‖2. In general, we use Greek letters for cotangent variables, dual to the space/time variables
(ξ is the horizontal wave number, dual to x, and τ is radial frequency, the dual of time, t). This
notation is consistent with [36, 37] as this work builds upon these papers. To correspond with
the notation of exploration seismology, τ is typically denoted as ω, ξ as kx and ζ as kz. The
notation ‖·‖ indicates the norm of a vector.

To simplify the notation in (2), we re-write it in matrix form

∂zD = AD + M, (3)

where

D =
(

u

∂zu

)
, A =

(
0 1

−A(z, x,Dx,Dt) 0

)
and M =

(
0

−f

)
. (4)

We diagonalize the operator matrix A, which can be done microlocally2, away from the zeros
of A(z, x, ξ, τ ). There is a z-family of pseudodifferential operator matrices Q(z) such that
microlocally,

U =
(

u+

u−

)
= Q(z)D, X =

(
f+

f−

)
= Q(z)M, (5)

and

B = Q(z)AQ−1(z) =
(

iB+(z, x,Dx,Dt) 0
0 iB−(z, x,Dx,Dt)

)
, (6)

where B± has principal symbol b±(z, x, ξ, τ ) = ±τ
√

c(z, x)−2 − τ−2‖ξ‖2 = ±b(z, x, ξ, τ ),
which corresponds with kz in the seismological notation.

The diagonalization procedure requires that cut-offs be applied to U to remove constituents
of the wavefield that propagate anywhere horizontal; these cut-offs are described in the
following section. We have omitted any indication that these cut-offs have not been applied in
this section to keep the notation in this section consistent with the notation in the remainder of
the paper, in which the cut-offs are assumed to have been applied. In this notation, u± satisfy
the system of one-way wave equations

(I∂z + Q(z)∂zQ
−1(z) − B)U = X, (7)

where I is the identity matrix.
With the conventions used here, u+ represents downward propagating waves and u−

represents upward propagating waves. (As is standard in geophysics, we have chosen the
positive z-axis downward.) The columns of the Q operator matrix are an operator
generalization of eigenvectors and we are free to choose their normalization in the operator
sense. We choose the vertical power flux normalization of de Hoop [11] so as to make B±
in (6) self-adjoint (the normalization changes the sub-principal part of the operator). In this
normalization, the decomposition and composition operators are

Q = 1

2

(
(Q∗

+)
−1 −HQ+

(Q∗
−)−1 HQ−

)
, Q−1 =

(
Q∗

+ Q∗
−

HQ−1
+ −HQ−1

−

)
, (8)

1 The symbol of the differential operator, P(x, Dx), is defined as P(x, ξ) in which the Dx has been simply replaced
with ξ . The principal symbol is generally denoted with the same symbol in lower case, i.e., p(x, ξ).
2 A statement is true microlocally, basically, if it is true in a neighbourhood of a point in phase space. See [34] for
an introduction to microlocal analysis.
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where ∗ denotes the operator adjoint, H is the Hilbert transform in time and the principal
symbol of both Q± is given by

(
τ 2

c(z,x)2 −‖ξ‖2
)−1/4

. The Q± operators act in the time variable
as time convolutions. From expressions (5) and (6) we find that

u = Q∗
+u+ + Q∗

−u−, and f± = ± 1
2HQ±f. (9)

In the flux normalization, the term Q−1∂zQ in (7) is of lower order in the singularities (i.e.
the operator is smoothing in comparison with other terms), thus we suppress it. If required, its
contribution can be accounted for by including it in the B matrix. We introduce the propagators
for the one-way wave equations (7) as

(I∂z − B) L = Iδ, L =
(

G+ 0
0 G−

)
. (10)

We will denote I∂z +B by P. We can now write the solution of (7) as U = LX, using Duhamel’s
principle, L is the forward parametrix of P. In components, in integral form this is

u+(z, ·) =
∫ z

−∞
G+(z, z0)f+(z0, ·) dz0 u−(z, ·) =

∫ ∞

z

G−(z, z0)f−(z0, ·) dz0. (11)

To make a connection to ray theory, the propagation of singularities by the one-way wave
equations (7) is governed by their principal symbols. These yield the Hamiltonians, ζ ∓ b, for
the system describing the rays in phase space; the evolution parameter along the rays is taken
to be depth, z. In the following section we use this analogy to subject u± and G± to cut-offs
removing near horizontally propagating constituents of the wavefield.

3. The Green functions

In the previous section we diagonalized the wave equation into two first-order equations.
In doing this, we implicitly assume that the diagonal system is equivalent to the original
system. This is nearly the case, but the choice of a principal direction alters the ability of the
system to propagate singularities in directions orthogonal to this preferred direction. Here,
we have chosen the vertical direction as the principal direction. To ensure that the diagonal
system does not propagate singularities incorrectly, singularities that propagate somewhere
horizontally must be attenuated. The details of the method are given in [36]; we give only
a brief description here to introduce the double-square-root (DSR) assumption used by Stolk
and de Hoop. This assumption states that there are no wave constituents that propagate
horizontally at any time. At the end of this section, we give a brief summary of the essential
properties of the Green functions.

In order to identify horizontal propagation, we work in the high frequency limit, i.e. we
develop these ideas via ray theory. Thus we define the phase angle

θ = arcsin(c(z, x)‖τ−1ξ‖), (12)

where (ζ, ξ) is the cotangent vector associated with (z, x) and c(z, x) is the velocity. Note
that if the angle θ is less than π/2 on a ray segment, the vertical velocity dz

dt
does not change

sign, allowing the parametrization of the ray segment by z. Thus, for any ray segment and any
given angle θ < π/2, we can define a maximal interval,

(zmin±(z, x, ξ, τ, θ), zmax±(z, x, ξ, τ, θ)), (13)

for which the propagation away from a particular point (z, x, ξ, τ ) can be parametrized by
z. In figure 1, the interval (zmin−, zmax−) is illustrated; it is the maximal interval such that a
bicharacteristic passing through the point (z, x), with direction (ζ, ξ), propagates in a direction
such that the angle of the ray with the vertical, θ , does not exceed a given value; in the figure
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z = 0

θ2

c(z, x)−1τ

θ1
ξ

θ2

(z, x)

zmin,−

z0

zmax,−

z

G−(z, z0)

Figure 1. Removing horizontal propagations. The symbol of the cut-off operator ψ is one up to an
angle θ1 and then decays smoothly to zero at the angle θ2. This removes all propagation at angles
larger than θ2, i.e., the region within the grey wedges.

θ

ξ

τcmin(z, x)−1

τcmax(z, x)−1

ζ

(z, x)
C|τ |

−C|τ |

Figure 2. Illustration of Iθ . The shaded region represents the ray directions in the set. The
minimum velocity in the region is cmin and the maximum is cmax.

this value is θ2. The angle θ can be given physical meaning by looking at the ray picture, in
figure 1.

In phase space, we introduce the set

Iθ = {(z, x, t, ζ, ξ, τ )| arcsin(c(z, x)‖τ−1ξ‖) < θ, |ζ | < C|τ |}, (14)

illustrated in figure 2, where C is the maximum slowness. Finally, we construct the sets

J−(z0, θ) = {(z, x, t, ζ, ξ, τ ) ∈ Iθ |τ−1ζ < 0 and zmax−(z, x, ξ, τ, θ) � z0}, (15)

and

J+(z0, θ) = {(z, x, t, ζ, ξ, τ ) ∈ Iθ |τ−1ζ > 0 and zmin+(z, x, ξ, τ, θ) � z0}. (16)

Figure 1 illustrates the set J−(z0, θ2), considering the shaded region as excluded from the set.
The sets J± encompass the regions of phase space that must be excluded in order to

remove horizontally propagating singularities while analysing G±(z, z0). To actually remove
singularities from these regions, we define a pseudodifferential cutoff

ψ− = ψ−(z, z0, x,Dx,Dt)
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with symbol satisfying

ψ−(z, x, ξ, τ ) ∼ 1 on J−(z0, θ1), (17)

ψ−(z, x, ξ, τ ) ∈ S∞ outside J−(z0, θ2), if z − z0 > δ > 0; (18)

here 0 < θ1 < θ2. Singularities propagating at an angle less than θ1 are unaffected by the
cutoff; at angles greater than θ2, the operator is smoothing. We then redefine u− as

u− ≡ ψ−u′
−, (19)

where u′
− is the wavefield u− of the previous section. In u− the singularities outside of J− have

been suppressed. There are equivalent expressions for the + constituents. We now rewrite the
operators defined above with the singularities outside of J− (or J+) suppressed. It is shown in
[36] and references therein that the solution operator L to the system of one-way equations P
(cf [10]) is

L =
(

G+ 0
0 G−

)
, (20)

redefining G± = ψG′
± where G′

± is the propagator described in the previous section. From
this point onwards we will assume that the above procedure has been followed and will be
reapplied if necessary.

The condition zmax−(z, x, ξ, τ, θ) � z0, in the definition of J− combined with the implicit
requirement that zmin− < 0 ensures that the two points between which one propagates the
wavefield are within the allowed propagation interval (zmin−, zmax−).

Remark 3.1. We denote the kernel of G−(z0, z) as (G−(z0, z))(x0, t0 − t, x) = G−(z0, x0,

t0 − t, z, x). The adjoint propagator (G−(z0, z)
∗)(x, t − t0, x0) = G∗

−(z, x, t − t0, z0, x0)

follows from∫
ds0 dt0v(z0, s0, t0)

(∫
ds dtG−(z0, s0, t0 − t, z, s)u(z, s, t)

)
=

∫
ds dt

(∫
ds0 dt0v(z0, s0, t0)G−(z0, s0, t0 − t, z, s)

)
u(z, s, t)

=
∫

ds dt

(∫
ds0 dt0(G−(z0, z)

∗)(s, t − t0, s0)v(z0, s0, t0)

)
u(z, s, t). (21)

Using the self-adjoint property of B, G−(z0, s0, t0 − t, z, s) = G+(z, s, t − t0, z0, s0),
microlocally so that G−(z0, z)

∗ = G+(z, z0). A similar result holds with + and − interchanged.
Note that the kernels of G± are causal.

Remark 3.2. The G± propagators obey the reciprocity relation (of the time convolution
type)

Q∗
+(z)G+(z, z0)Q+(z0) = −Q∗

−(z0)G−(z0, z)Q−(z). (22)

This reciprocity relation is derived from the reciprocity of the full-wave propagator.

Remark 3.3. We have

G−(z, z′)G−(z′, z′′) = G−(z, z′′), (23)

for z < z′ < z′′; this property is known as the semi-group property. The same property holds
for G+.

In the above, we have nowhere assumed the absence of caustics in the wavefield. This
section has addressed the necessary assumption that rays are nowhere horizontal: the double-
square-root assumption [36, assumption 2].
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4. Scattering: contrast source formulation

The Bremmer formulation assumes a degree of smoothness in the velocity model. In the
contrast formulation of the Lippmann–Schwinger approach, the velocity, c, is split into a
background, c0, which is here assumed to be smooth (C∞) and a singular contrast, δc, which
is here assumed to be a superposition of conormal distributions. A series is then constructed
with terms of increasing order in δc. We use a hybrid of the two approaches; the contrast-
source integral equation (Lippmann–Schwinger) subjected to a directional decomposition
(Bremmer). We begin with the wave equation in the smooth background and in the true
medium respectively

(I∂z − A0)D0 = M, (I∂z − A)D = M, (24)

where the subscript 0 indicates that an operator is using the smooth background parameters
and no subscript indicates an operator acting on the full medium. Subtracting the equation in
the smooth background from that in the true medium gives the contrast equation

(I∂z − A0)δD = −δAD, (25)

where D = D0 + δD and A = A0 + δA. The right-hand side of (25) is the so-called contrast
source. We have (cf (4))

δA =
(

0 0
δA 0

)
where δA(z, x,Dt ) = −2c−3

0 δc(z, x)D2
t = −a(z, x)D2

t , (26)

defining the contrast a. We insert the Bremmer formulation into that above by diagonalizing
the A0 matrix operator. We apply the (smooth background) diagonalizing Q operator
matrices to transform the system in (25). Using the diagonalization procedure of section 2,
equation (6) in particular, we find

(I∂z − B0)δU = −Q(z)∂zQ
−1(z)δU − Q(z)δAQ−1(z)U, (27)

recalling, from section 2, the definition of U

U = Q(z)D (28)

while,

U0 := Q(z)D0, (29)

δU := Q(z)δD. (30)

The Q operator matrix is common in all the transformations. Note that δA will not, in general,
be diagonalized by Q as the Q operators diagonalize A0 in the background velocity model only.

Since we have used the flux normalization, the −Q(z)∂zQ−1(z)δU term is of lower order
as before (discussion above (10)). This term could be absorbed in δA by δA := δA + I∂z. We
omit this contribution so that

(I∂z − B0)δU = −Q(z)δAQ−1(z)U, (31)

where Q(z)δAQ−1(z) is given explicitly as

V = Q(z)δAQ−1(z) = 1

2
H

(
Q+(z)aQ∗

+(z) Q+(z)aQ∗
−(z)

−Q−(z)aQ∗
+(z) −Q−(z)aQ∗

−(z)

)
D2

t . (32)

In (31), we make the analogy with (7) where δU plays the role of U and −Q(z)δAQ−1(z)U

that of X, which is now the contrast source.
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We make the comparison between the elements of V and the reflection and transmission
operators of [11], namely,

V =
(

S++ S−+

S+− S−−

)
D2

t . (33)

Here, S++ and S−− are interpreted as transmission operators since they govern scatterings
between singularities travelling in the same principal direction before and after scattering. In
contrast, S−+ and S+− are interpreted as reflection operators because they govern scatterings
that result in a change of principal direction; from up-going to down-going and down-going
to up-going, respectively.

To simplify the notation, we define

P0 = I∂z − B0, (34)

and its forward parametrix,

L0 =
(

G+ 0
0 G−

)
. (35)

In this notation, (31) reduces to

P0δU = −V U, (36)

or

δU = −L0(V U). (37)

The V operator matrix is a distributional multiplication along with a second time derivative,
whereas L0 is the forward parametrix of a partial differential operator. Writing U = U0 + δU

gives

δU = −L0(V U0) − L0(V δU), (38)

or equivalently,

(I + L0V )δU = −L0(V U0). (39)

As was done in (26), we take out the time derivative from V . Thus we introduce V̂ , the matrix
of S±± operators (cf (33)), namely,

V (z, x,Dt) = V̂ (z, x)D2
t , (40)

which results in(
I + D2

t L0V̂
)
δU = −D2

t L0(V̂ U0), (41)

where V̂ δU and V̂ U0 are products of distributions (subject to the condition that their wavefront
is favourably oriented [16, proposition 11.2.3], [19, theorem 8.2.10]). This is the resolvent
equation in our hybrid Lippmann–Schwinger–Bremmer formulation for scattered waves. (See
[43] for details on resolvent equations.)

5. Scattering series

5.1. Forward scattering series

In this section, we describe the construction of the forward scattering series for δU in terms
of V̂ , based on the discussion of the previous section. We arrive at expressions (43), (46) and
(47) below, through which data are modelled.
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z0

z1

s0 r0

z1

z0
s0 r0

Figure 3. Single scattering (left panel) versus primary reflection (right panel). The black dots
indicate transmission scatterings.

Here, we define a singly scattered wave as a wave that has been reflected or transmitted
once, such as that shown on the left in figure 3. The term primary reflection is associated with
any ‘ray-path’ (more accurately wave-path since we use wave solutions rather than ray theory)
that has reflected only once but may have gone through several transmissions, or scatterings
where the direction of the wave does not change. This type of contribution is depicted in the
right panel of figure 3. Primary reflections have the same travel time as singly scattered waves
but will have different amplitudes because of the transmissions. The same distinction can be
made between leading-order internal multiples and triply scattered waves. The diagram on
the right of figure 3 is a triply scattered event. The third-order contributions that we take into
account are those for which each scattering event is a reflection, i.e., after the scattering the
singularities propagate in the opposite direction to that in which they were propagating before
the scattering. We refer to contributions such as these, where none of the three scattering
events occurs at the acquisition surface, as leading-order internal multiples. The goal of this
section is to develop a method for modelling such scattered wave constituents in the data.

Having identified (41) as a resolvent equation, we set up the recursion

δU =
M∑

m=1

(−1)mδUm(V̂ ), (42)

where

δU1(V̂ ) = D2
t L0(V̂ U0), and δUm(V̂ ) = D2

t L0(V̂ δUm−1(V̂ )), m = 2, 3, . . . .

(43)

Each subsequent term in the series is a multilinear operator of higher order than previous
terms.

To compare the Bremmer series formulation ((VII.1)–(VII.22) of [11]) to the recursion
in (42) we first make the following identifications. From (VII.1) and (VII.12) we note that
W0 of [11] corresponds to δU1. From this formulation we note that −D2

t L0V̂ corresponds
to K of equation (VII.15) in [11] and (42) corresponds to equation (VII.22). The major
difference between this hybrid series and the Bremmer series is in the coupling of the different
components. In the Bremmer series the reflection and transmission operators come from
derivatives of the medium contrast whereas in the hybrid series they come from differences
between the reference and true model. We use this hybrid formulation to derive operators that
model both ‘singly’ and ‘triply’ scattered waves.

The expressions in (42) and (43) are not quite in the form of observables, however; data are
acquired only at the Earth surface, but the L0 operator models data at all depths. We therefore
define a restriction operator, R, which restricts a distribution to the acquisition surface, z = 0.
This operator does not account for the free-surface boundary condition, thus we assume a
continuation of the medium, with no reflectors, above the acquisition surface. In this way we
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have excluded incoming waves from above the acquisition surface. We assume that there are
no reflectors at or near this surface, i.e., we assume that the support of the medium contrast, a,
does not contain source or receiver points. The composition RL0 is well defined provided there
are no grazing rays [35], which have been excluded already by the ψ cut-off from section 3.
Observable quantities are obtained by applying Q−1 to δU , as in (30). We thus rewrite (42) as

RQ−1δU(V̂ ) =
M∑

m=1

(−1)mRQ−1δUm(V̂ ), (44)

with

RQ−1δU1(V̂ ) = D2
t RQ−1L0(V̂ U0), (45)

introducing the operator

M0 = RQ−1L0. (46)

We then can write

RQ−1δU(V̂ ) = −D2
t M0

(
V̂

(
U0 +

M∑
m=1

(−1)mδUm(V̂ )

))
, (47)

for modelling the surface reflection data, in which δUm is defined in (43). The first term on
the right-hand side of (47) is the Born approximation. Using the notation introduced in (4) we
have, from the leading-order term, an expression for the singly scattered data3

δD =
(

d

∂zd

)
= −RQ−1δU1(V̂ ) = −D2

t M0(V̂ U0). (48)

From this term the singly scattered data are modelled in section 6.1. In section 6.2 the
second term of (47) is used to model internal multiples by examining the m = 2 term of the
summation. Note that the recursion in (47) gives an expression for the data at the surface in
terms of the unrestricted field from the previous step; the restriction is applied as a last step
after the recursion is completed.

5.2. Inverse scattering series using all the data

The forward scattering series (47) models the data, given a representation of the medium as the
sum of a smooth background and singular contrast. The inverse series estimates the medium
contrast from the data. In this section we derive this inverse series, arriving at a recursion for
the medium contrast in (61).

To motivate the inverse series, we return to (41) and write it as an equation for V̂ in terms
of δU

D2
t L0(V̂ (U0 − (−δU))) = −δU, (49)

or, returning to observables via the RQ−1 operator,

D2
t M0(V̂ (U0 − (−δU))) = −δD. (50)

We then set up an inverse series, by assuming that the medium contrast can be represented in
terms of a series of operators,

V̂ =
M∑

m=1

V̂m (51)

3 We continue to use the notation D in δD even though we have now applied the restriction operator, R.
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where m indicates the ‘order’ of V̂m in the data. This series representation is suggested for
quantum mechanical problems by Moses [28], where the analogue of (51) is his equation (3.12).
It is also suggested by Razavy [30] for wave problems, in which the analogue of (51) is his
equation (33). Perhaps the closest analogue to what is done here is given by Prosser [29],
equations (7) and (8). It is this theory, for the Lippmann–Schwinger series, that is used
extensively by Weglein et al [42].

Substituting (51) into (42) yields a recursion for V̂m in terms of δU ,

δU = −D2
t L0(V̂1U0) (52)

0 = −D2
t L0(V̂2U0) + D4

t L0(V̂1L0(V̂1U0)) (53)

0 = −D2
t L0(V̂3U0) + D4

t L0(V̂2L0(V̂1U0)) + D4
t L0(V̂1L0(V̂2(U0)))

−D6
t L0(V̂1L0(V̂1L0(V̂1U0))) (54)

...

These equations are assumed to hold anywhere in the interior of the scattering region.
Restricting δU to the surface and transforming it into observables by applying RQ−1 to
(52)–(54) yields a recursion for V̂m in terms of the data d,

δD = −D2
t M0(V̂1U0) (55)

0 = −D2
t M0(V̂2U0) + D4

t M0(V̂1L0(V̂1U0)) (56)

0 = −D2
t M0(V̂3U0) + D4

t M0(V̂2L0(V̂1U0)) + D4
t M0(V̂1L0(V̂2(U0)))

−D6
t M0(V̂1L0(V̂1L0(V̂1U0))) (57)

...

These equations hold on the acquisition surface, z = 0. In general, ∂zd (the second component
of δD) is not recorded. We assume that we record only the up-going field, d−, from z > 0.
With this assumption, d = Q∗

−d− and ∂zd = −HQ−1
− d− allowing ∂zd to be estimated directly

from d.
The first term in the series, given in (55), models singly scattered data. The third term,

in (57), models leading-order internal multiples as well as other primary events such as that
shown on the right in figure 3. (The second term, given in (56), models events which have
scattered twice, including primary events with one transmission and one reflection.)

Equation (57) can be simplified using (53). This is done by noting that the distributions
D2

t L0(V̂2U0) from the second term of (57) and D4
t L0(V̂1L0(V̂1U0)) from the third term are

identical by (53) and D2
t M0V̂1(·), which acts on these distributions (again in the second and

third terms) is a linear operator. With this simplification we have, for (57)

D2
t M0(V̂3U0) = D4

t M0(V̂2L0(V̂1U0)). (58)

The general recursion follows from the fact that higher-order terms are built from lower-order
terms through the application of D2

t M0V̂i to (j − i)th-order terms to form terms of order j . For
example, terms of order 4 are formed by subtracting D2

t M0V̂1 applied to (54), D2
t M0V̂2 applied

to (53) and D2
t M0V̂3 applied to the right-hand side of (52), from D8

t M0V̂4U0. In general, terms
of order j will contain sub-series of the form

D2
t M0V̂1 (sum of terms of order j − 1 from (52)–(54)), (59)

D2
t M0V̂2 (sum of terms of order j − 2 from (52)–(54)), (60)
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etc. For j � 2 the sub-series in parentheses sum to zero because of the zero on the left-hand
side of (53).

We obtain the final form of the recursion,

D2
t M0(V̂jU0) = D4

t M0(V̂j−1L0(V̂1U0)), j � 2, (61)

while

D2
t M0(V̂1U0) = −δD.

Solving these recursions for V̂j gives, in principle, a solution for the medium contrast, V̂ , in
terms of the data, d, as in (51). Note the similarity in structure between (61) and (43); (61)
constructs the medium contrast in terms of the data, while (43) constructs the data in terms of
the medium contrast.

Remark 5.1. Using (61) along with the expression for δU in (52), we can write the V̂ -series
as

−D2
t M0(V̂ U0) = δD −

(
M∑

m=1

D2
t M0(V̂mδU)

)
. (62)

This expresses higher order terms in the series as a correction to the data, d. In what follows,
we examine the correction obtained from the sum in (62); we specifically examine the m = 2
term in the series.

Remark 5.2. We verify the compatibility of (47) and (51) for M = 2. To this end we insert,

V̂ ≈ V̂1 + V̂2 + V̂3, (63)

into the truncated forward series

δD ≈ −D2
t M0(V̂ U0) + D4

t M0(V̂ L0(V̂ U0)) − D6
t M0(V̂ L0(V̂ L0(V̂ U0))). (64)

Terms of first, second and third ‘order’ in the resulting sum cancel. The fourth ‘order’ term in
this truncated sum is

D4
t M0(V̂1L0(V̂3U0)) + D4

t M0(V̂2L0(V̂2U0)) + D4
t M0(V̂3L0(V̂1U0))

−D6
t M0(V̂1L0(V̂1L0(V̂2U0))) − D6

t M0(V̂1L0(V̂2L0(V̂1U0)))

−D6
t M0(V̂2L0(V̂1L0(V̂1U0))), (65)

which vanishes by (61). This implies that the error contains fifth ‘order’ to ninth ‘order’ terms.

6. Modelling multiply scattered data

This section illustrates the modelling of data based on the series discussed in the previous
section. We consider two cases: modelling primaries in the single scattering approximation
and modelling internal multiples from the third term of the series. Section 6.1 derives a method
of modelling the primaries (singly scattered data), d1, from the first term in (47). Section 6.2
derives a representation of internal multiples, d3 using the m = 2 term of the sum in (47).
In both these sections, we track the wavefield from the source, through the scattering(s) to
the receiver. The results of this section are the expression for modelling singly scattered data
given in (75) and that for modelling triply scattered data in (80).
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6.1. Single scattering

The first term in the forward scattering series given in (47) is used to construct data in the
Born approximation in accordance with equation (3.10) of [36]. We give here an alternate
derivation of this equation, resulting in our equation (75). We formulate the solution only for
the upward propagating constituent of δU1, which we denote by δu−,1. We first determine the
form of the down-going constituent of U0, denoted by u+,0, which is the down-going wave
excited at the surface and arriving at the scattering point. With the expression for the source
f+ in (9) and that for u+ in (11) we find that

u+,0(z1, x1, t1, z0, s0) = 1

2

∫ z1

−∞
dz̃0

∫
ds̃0

∫
R

dt̃s0G+(z1, x1, t1 − t̃s0 , z̃0, s̃0)

×HQ+,s̃0(z̃0)f (z̃0, s̃0, t̃s0 , z0, s0), (66)

where we will adopt the convention that an integral without limits is assumed to be an
integration over R

n−1. In general, s represents a source position, r represents a receiver
position, t is a time variable and z is depth, regardless of subscripts and superscripts. The
notation Q−,s(z) is short for Q−(z, s,Ds,Dt). The t integrations are limited implicitly by the
causality of the Green function. The operator G+ in (66) propagates between the levels z0

and z1, with its action being in the lateral variables s̃0, and t̃s0 ; we will also use the notation
G+(z1, z0) for the propagator G+ when the lateral positions at which it acts are unambiguous.
We adopt the standard kernel notation that the input variables to an operator are written to
the right of the output variables. We are justified in writing the time dependence of G± as
the difference of elapsed time and initial source time as the wave equation is time translation
invariant. Expression (66) is valid for z1 > z0. The parameters z0, s0 are assumed to be
known.

Next, we derive an expression for c−, the up-going constituent in the contrast source given
by, (

c+

c−

)
= V U0 = V

(
u+,0

u−,0

)
. (67)

Using the expression for V in (33), and recalling that u−,0 = 0 for depths deeper than the
source depth, we obtain an expression for c−,

c−(z1, x1, t1) = − 1
2HD2

t1
Q−,x1(z1)a(z1, x1)Q

∗
+,x1

(z1)u+,0(z1, x1, t1, z0, s0). (68)

Substituting c− from (68) for f− in (11) gives

δu−,1
(
z0, r0, tr0 , z0, s0

) = −1

2
HD2

tr0

∫ ∞

z0

dz1

∫
dx1

∫
R

dt1 G−
(
z0, r0, tr0 − t1, z1, x1

)
× Q−,x1(z1)a(z1, x1)Q

∗
+,x1

(z1)︸ ︷︷ ︸
S+−

u+,0(z1, x1, t1, z0, s0) (69)

in the diagonal system without the restriction to the Earth’s surface, z0 = z̃0 = 0. This is
the first term in the series in (42)–(43). Because a is compactly supported in z1, the integral
over z1 is actually over a compact set. As in the previous section, we assume that the medium
contrast, a, has its support away from z = 0. To obtain modelled data, we apply the RQ−1

operator as in (47),

d1
(
s0, r0, tr0

) =
∫

ds̃0

∫
R

dt̃s0

1

4
D2

tr0

∫ ∞

0
dz1

∫
dx1

∫
R

dt1Q
∗
−,r0

(0)

G−
(
0, r0, tr0 − t1, z1, x1

)
Q−,x1(z1)a(z1, x1)Q

∗
+,x1

(z1)

G+
(
z1, x1, t1 − t̃s0 , 0, s̃0

)
Q+,s̃0(0)f

(
0, s̃0, t̃s0 , 0, s0

)
, (70)
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r1s1

G−(z0, z1)

G+(z1, z0)

s0 r0
z0

z1

x

G−(z0, z1)

E1

Figure 4. Notation for single scattering modelling.

yielding the Born modelled data in terms of the G±, the solutions of the single square-root
equation. This is the first entry in the δD vector, in the series in (47).

We apply reciprocity (22) to (70) to write d1 in terms of G− only, giving

d1
(
s0, r0, tr0

) = −
∫

ds̃0

∫
R

dt̃s0f
(
0, s̃0, t̃s0 , 0, s0

)1

4
D2

tr0

∫ ∞

0
dz1

∫
dx1

∫
R

dt1Q
∗
−,r0

(0)

G−
(
0, r0, tr0 − t1, z1, x1

)
Q−,x1(z1)Q

∗
−,s̃0

(0)

G−
(
0, s̃0, t1 − t̃s0 , z1, x1

)
Q−,x1(z1)a(z1, x1). (71)

To write (71) in terms of a single Green function for the source and receiver together, there
must be integrations in (x1, t1) for each of the Green functions. To introduce these integrations
we introduce two extension operators,

E1 : a(z, x) 
→ δ(r − s)a
(
z,

r + s

2

)
, E2 : b(z, r, s) 
→ δ(t)b(z, r, s), (72)

through their action on the functions a and b. These operators extend the medium contrast,
a(z, x), into fictitious data (now a function of (z, s, r, t)) in the subsurface as illustrated in
figure 4. With these operators, we re-write (71), now assuming a point source in both space
and time. This gives,

d1
(
s0, r0, tr0

) = −1

4
D2

tr0

∫ ∞

0
dz1

∫
ds1

∫
dr1

∫
R

dt0

∫
R

dt1Q
∗
−,r0

(0)

G−
(
0, r0, tr0 − t1 − t0, z1, r1

)
Q−,r1(z1)Q∗

−,s0
(0)

G−(0, s0, t1, z1, s1, 0)Q−,s1(z1)(E2E1a)(z1, s1, r1, t0). (73)

We note that the two one-way Green functions are connected through time convolution.
To obtain a more compact expression, we return to operator notation, first introducing

(H(z0, z1))(s0, r0, t − t0, s1, r1)

=
∫

R

(G−(z0, z1))(r0, t − t ′ − t0, r1)(G−(z0, z1))(s0, t
′, s1) dt ′, (74)

the kernel of the propagator H(z0, z1) associated with the so-called double-square-root
equation [9], which propagates data from the depth z1 to the depth z0. Substituting this
expression for the two Green functions in (73) gives equation (3.10) of [36, theorem 5.1],

d1
(
s0, r0, tr0

) = −1

4
D2

tr0
Q∗

−,r0
(0)Q∗

−,s0
(0)

∫ ∞

0
dz1(H(0, z1)Q−,r1(z1)

Q−,s1(z1)(E2E1a))
(
s0, r0, tr0

)
. (75)
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s0 r0

r3

s2 r2r2s2

t1 ta t4

s0

s3
z3

z2

z1

z0
s0

r2s2

t3

s3

s0

s2

mr msmr msmr

Figure 5. Triple scattering notation and convention. This illustration assumes that the E2 and E1
operators have been applied to be clear which variable refers to which leg of the interactions.

6.2. Leading-order internal multiple scattering

In (75), we showed how singly scattered data can be constructed given the medium perturbation.
Our ultimate goal is to construct the medium contrast given data containing both primaries and
leading-order internal multiples. In this section we establish a relation between the modelling
of primaries and internal multiples.

Following the diagram in figure 5, the first scattering of the internal multiple, from s0

through s2, r2 to mr is nearly identical to the single scattering case. We cannot use the
H operator however, because the second leg (from r2 to mr ) does not reach the surface,
z = 0. Thus,

δu−,1(z1,m, ta, 0, s0) = −1

4
D2

ta

∫
ds̃0

∫
R

dt̃s0f
(
0, s̃0, t̃s0 , 0, s0

)
Q∗

−,s̃0
(0)∫ ∞

z1

dz2

∫
ds2

∫
dr2

∫
R

dt0

∫
R

dt ′G−
(
z1,m, ta − t̃s0 − t ′ − t0, z2, r2

)
×G−(0, s̃0, t

′, z2, s2)Q−,r2(z2)Q−,s2(z2)(E2E1a)(z2, s2, r2, t0), (76)

where t ′ = t1 − t̃s0 and ta is the running time variable along the ray (see figure 5). We
assume that the three scattering points for multiple scattering are sufficiently far apart. We
assume that the singular support of a consists of a countable set of hypersurfaces. This
prevents an undefined multiplication of distributions from occurring (see [16, proposition
11.2.3] and [19, theorem 8.2.10]). In (76), we have not returned to observables as the second
leg, G−

(
z1,m, ta − t̃s0 − t ′ − t0, z2, r2

)
, does not reach the surface (z1 > 0). The field, δu−,1,

acts as the source of waves propagating from m to s3, through the contrast source formulation
used in the single-scattering case. (The contrast source was explicitly defined in section 4
equation (25).) This gives,

δu+,2(z3, x3, t3, 0, s0) = 1

2
HD2

t3

∫ z3

0
dz1

∫
dm

∫
R

dtaG+(z3, x3, t3 − ta, z1,m)

×Q+,m(z1)a(z1,m)Q∗
−,m(z1)δu−,1(z1,m, ta, 0, s0), (77)

which acts as a contrast source for the final wave, propagating from (z3, r3) to (0, r0),

d3(s0, r0, t4) = −1

2
HD2

t4
Q∗

−,r0
(0)

∫ ∞

0
dz3

∫
dx3

∫
R

dt3G−(0, r0, t4 − t3, z3, x3)

×Q−,x3(z3)a(z3, x3)Q
∗
+,x3

(z3)δu+,2(z3, x3, t3, 0, s0), (78)

where we have returned to observables through the operator RQ−1, introduced in (47). For
the above construction to be valid, (z1, x1), (z2, x2) and (z3, x3) cannot be arbitrarily close to
one another.

We now apply reciprocity (22) to the G+ occurring in the expression for δu+,2 in (77). We
do this by substituting the expression for δu+,2 in (77) into (78) to use the Q+ operators from



Inverse multiple scattering 1153

both expressions combined and introduce the extension operators E1, E2. This gives

d3(s0, r0, t4) = −1

4
D4

t4

∫ ∞

0
dz3

∫
ds3

∫
dr3

∫
R

dt3

∫ z3

0
dz1

∫
dms

∫
dmr

∫
R

dtaQ
∗
−,r0

(0)

G−(0, r0, t4 − t3, z3, r3)Q−,r3(z3)Q∗
−,ms

(z1)

G−(z1,ms, t3 − ta, z3, s3)Q−,s3(z3)

(E1a)(z3, s3, r3)(E1a)(z1,ms,mr)Q
∗
−,mr

(z1)δu−,1(z1,mr, ta, 0, s0); (79)

we have also introduced the extension operator E1, to split each of the m and x3 integrations
into two.

Associating the propagator Q−,xa
(za)G−(za, zb)Q−,zb

(zb) in (79) with the function
G(za, xa, t, zb, xb) in equation (8) of [38] along with the substitution of the expression for
δu−,1 in (77) shows the correspondence of (80) with expression (8) in [38]. (Note that V (x)

in [38] is a(z, x) here.)
We interchange the order of integration in t3 and ta , and change integration variables from

t3 to t ′3 = t3 − ta , introducing the E2 operator at the third scatter. This results in

d3(s0, r0, t4) = −1

4
D4

t4

∫ ∞

0
dz3

∫
ds3

∫
dr3

∫
R

dt30

∫
R

dta

∫ z3

0
dz1

∫
dms

∫
dmr∫

R

dt ′3Q
∗
−,r0

(0)G−(0, r0, t4 − ta − t ′3 − t30, z3, r3)Q−,r3(z3)Q
∗
−,ms

(z1)

×G−(z1,ms, t
′
3, z3, s3)Q−,s3(z3)(E2E1a)(z3, s3, r3, t30)

× (E1a)(z1,ms,mr)Q
∗
−,mr

(z1)δu−,1(z1,mr, ta, 0, s0), (80)

which is a modelling operator for triply scattered waves. We need not introduce E2 at the
ms,mr scattering point here, but it will be required later. Equations (80) and (76) are expressed
entirely in terms of up-going propagators (G−); they comprise the m = 2 term of the forward
series, given in the summation in (47).

The recursion in equation (61) demonstrates that it is possible to express the triply scattered
data, d3, in terms of the singly scattered data d1. The first step to writing d3 in terms of the
singly scattered data is to reformulate (80) so that propagation is always to the acquisition
surface. This idea is motivated by the layer stripping approach proposed by Fokkema [15]
to extend the work of Berkhout and Verschuur for surface multiples [4, 40] to the internal
multiple case.

Theorem 6.1. Let the data be modelled by (47) for M = 2. Let

d1(z1; s0, r0, t) = −1

4
D2

t Q
∗
−,r0

(0)Q∗
−,s0

(0)

∫ ∞

z1

dz

(H(0, z)Q−,r (z)Q−,s(z)(E2E1a))(s0, r0, t) (81)

represent the single scattered data constituent observed at the surface, but scattered below the
depth z1. Define the convolution

W(z1; s0,m
′
r , t, m

′
s , r0) =

∫
R

dtb d1(z1;m′
s , r0, t − tb)d1(z1; s0,m

′
r , tb), (82)

and let d3 denote the triply scattered field corresponding to the m = 2 term in (47). Then,

d3(s0, r0, t4) = D2
t4

∫ ∞

0
dz1

∫
dms

∫
dmr

∫
R

dtm0(E2E1a)
(
z1,ms,mr, tm0

)
Q∗

−,ms
(z1)

×Q∗
−,mr

(z1)H(0, z1)
∗Q∗

−,m′
r
(0)−1Q∗

−,m′
s
(0)−1W

(
z1; s0,

m′
r· , t4 +

tm′· ,
m′

s· , r0
)
.

(83)
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The proof is given in appendix A. The fictitious data d1 are the singly scattered data
constituent predicting reflections below the level z1. Because W is estimated at z = 0 but
depends explicitly on z1, the depth level that generates multiples, we separate z1 from the
other variables with a semi-colon.

Assuming the travel-time monotonicity assumption as done in [38], would allow the
restriction in z1 to be translated to a restriction on the time t − ts , allowing d1 to be computed
from d1 by windowing in time. Expression (83) can be viewed as an inner product in the(
ms,mr, tm0

)
variables.

In appendix B, we write d3 entirely in terms of the data, completing the correspondence
with (61), and compare our approach to that of Weglein [42] and ten Kroode [38].

7. Inverse scattering method

Rather than following the approach of attenuating multiples in the data, we estimate and
attenuate artefacts in the image caused by leading-order internal multiples. This requires an
estimate of the multiples in the image rather than in the data as we have done thus far. To
this end, we now discuss an inverse scattering theory. From the inverse series, constructed in
section 5.2, we note that only a single-scattering inverse is required, because for each term in
the series we estimate V̂j from M0(V̂jU0) based on the recursion in (61). We therefore only
need to determine the inverse of the linear mapping V̂ 
→ −D2

t M0(V̂ U0).
A left inverse to the Born modelling operator, the inverse scattering operator, can be

constructed under the double-square-root assumption (see section 3 and [36]). Stolk and de
Hoop [37] give a method for inverse scattering from singly scattered data; here we give a brief
summary. The construction involves the depth-to-time conversion operator, K̄ , defined as

K̄ : a 
→ −
∫ ∞

0
H(0, z)(E2a)(z, ·, ·, ·)(s, r, t) dz. (84)

Stolk and de Hoop show that this operator is an invertible Fourier integral operator. Upon
substitution of a point source in (75), we obtain

d1 = 1
4D2

t Q
∗
−,s(0)Q∗

−,r (0)K̄J (E1a). (85)

The operator J (denoted V by Stolk and de Hoop [37]), has the symbol

J (z, s, r, ζ, σ, ρ) = |τ |−1(c0(z, s)
−2 − τ−2‖σ‖2)−1/4

× (c0(z, r)
−2 − τ−2‖ρ‖2)−1/4|τ=�−1(z,s,r,ζ,σ,ρ). (86)

This operator is related to the Q−,s(z)Q−,r (z) appearing in (75); the difference is that J is
applied before the E2 extension operator whereas Q−,s(z)Q−,r (z) is applied after. The map
� is defined by (cf (6))

�(z, s, r, σ, ρ, τ ) = −b(z, s, σ, τ ) − b(z, r, ρ, τ ). (87)

Stolk and de Hoop [36, lemma 4.1] show that τ 
→ ζ = �(z, s, r, σ, ρ, τ ) is a diffeomorphism.
The mapping from frequency to vertical wavenumber described by this map is required for J

to be applied before the E2 extension operator.
After defining the adjoint operator in space (restriction to s = r) by R1 = E∗

1 , the adjoint
operator in time (restriction to t = 0) by R2 = E∗

2 , and the normal operator 
̄ = K̄∗K̄ we
have

�̄(z, x,Dz,Dx)a = R1J
−1
̄−1K̄∗Q∗

−,s(0)−1Q∗
−,r (0)−1D−2

t d1, (88)

where �̄ is shown in [37, theorem 2.2, remark 2.4] to be a pseudodifferential operator.
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The operator �̄ influences only the amplitudes of the image; its principal symbol is
calculated by Stolk and de Hoop [37, lemma 2.1, theorem 2.2, remark 2.4].

We have essentially determined an inverse of the linear mapping V̂ 
→ −D2
t M0(V̂ U0).

From (61) we then have an estimate of the single scattering inverse

〈a1〉 = �̄a1 = R1J
−1
̄−1K̄∗Q∗

−,s(0)−1Q∗
−,r (0)−1D−2

t d. (89)

In (89) we have used the single scattering approximation, in which the data in (55) are used
as an approximation of the data in (48). We use the 〈·〉 notation to indicate that this is an
estimate of a rather than its true value; the subscript 1 indicates that this estimate is obtained
in the single scattering approximation. From this estimate of a, we obtain an estimate of the
operator matrix V1 using (32), with

〈V̂1〉 = 1

2
H

(
Q+〈a1〉Q∗

+ Q+〈a1〉Q∗
−

−Q−〈a1〉Q∗
+ −Q−〈a1〉Q∗

−

)
. (90)

8. The downward continuation approach to inverse scattering for internal multiples

The construction of d1 with (81), at the surface, requires both an estimate of a and the modelling
of the wavefield from this estimate. If the d3 data set could be computed at the depth z1 rather
than at the surface z = 0 this modelling can be avoided. In this section, we give three results
that form the framework of an algorithm to estimate artefacts caused by internal multiples in
imaging. We assume that the DSR assumption (see below remark 3.3) holds throughout this
section.

Lemma 8.1. We define

d̃1(z, s, r, t) = −1

4
D2

t

∫ ∞

z

dz′(H(z, z′)Q−,r ′(z′)Q−,s ′(z′)(E2E1a)
(
z′,

s ′
· , r ′

· , t ′· ))
(s, r, t).

(91)

For t > 0

(H(0, z)∗Q∗
−,s(0)−1Q∗

−,r (0)−1d1)(s, r, t) = d̃1(z, s, r, t), (92)

where d1 is modelled by (75).

This lemma is illustrated in figure 8.
We first define ā = (1 − χ)a where χ is the characteristic function of (0, z). With this

definition we write d̃1 as

d̃1(z, s, r, t) = −1

4
D2

t

∫ ∞

0
dz′(H(z, z′)Q−,r ′(z′)Q−,s ′(z′)(E2E1ā)

(
z′,

s ′
· , r ′

· , t ′· ))
(s, r, t).

(93)

We then examine

Q∗
−,s(0)Q∗

−,r (0)H(0, z)d̃1 − d1 = −1

4
D2

t Q
∗
−,s(0)Q∗

−,r (0)

∫ ∞

0

(
H(0, z′)Q−,r ′(z′)

× Q−,s ′(z′)(E2E1χa)
(
z′,

s ′
· , r ′

· , t ′· ))
(s, r, t)

= −1

4
D2

t Q
∗
−,s(0)Q∗

−,r (0)

∫ z

0

(
H(0, z′)Q−,r ′(z′)

× Q−,s ′(z′)(E2E1a)
(
z′,

s ′
· , r ′

· , t ′· ))
(s, r, t). (94)
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Figure 6. Time notation used to estimate d3 at z1.

z1

z2

z3

0
s0 r0

s2 r2

r3s3

E2E1 (a = −1)

msmr

Figure 7. Illustration of the surface-related multiple elimination case (SRME).

Applying H(0, z)∗Q∗
−,s(0)−1Q∗

−,r (0)−1 to both sides of (94) gives

d̃1 − H(0, z)∗Q∗
−,s(0)−1Q∗

−,r (0)−1d1 = −1

4
D2

t H (0, z)∗
∫ z

0

(
H(0, z′)Q−,r ′(z′)Q−,s ′(z′)

× (E2E1a)
(
z′,

s ′
· , r ′

· , t ′· ))
(s, r, t). (95)

We follow the propagation of singularities of H(0, z)∗H(0, z′), subject to 0 < z′ � z and the
DSR assumption within the integral on the right-hand side of (95). The operator H(0, z)∗

backpropagates the singularities generated by H(0, z′) at the surface along exactly the same
bicharacteristics. Microlocally, d̃1 = H(0, z)Q∗

−,s(0)−1Q∗
−,r (0)−1d1 for t > 0 only.

Equation (92) describes a method of estimating (for single scattering) the data that would
have been recorded had the experiment been performed at depth z from the data recorded at
the surface; this is downward continuation.

We now define the convolution of the d̃1 data sets, that have been restricted to t > 0, at
the depth z, of the second scattering point for leading-order internal multiples

d̃3(z, s, r, t) = D2
t

∫
ds ′

∫
dr ′Q∗

−,s ′(z)(E1a)(z, s ′, r ′)Q∗
−,r ′(z)

×ψ(t)d̃1
(
z, s ′, r,

t· ) (t)∗ ψ(t)d̃1
(
z, s, r ′,

t· )
. (96)

We use the notation ψ(t)d̃1 to indicate the t > 0 restriction. The operator E1 contains
δ(s ′ − r ′), thus the integral in (96) is over all possible source–receiver pairs with s ′ = r ′.
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r1r1 s1

r′s′

d̃1(z, s1, r1, t1)

z

0

d1(s, r, t)

z′

s1

r′s′

s rrs

Figure 8. Illustration of lemma 8.1; the construction of d̃1 from d1.

G∗
−

z1

z2

z3

0

G∗
−

ms mr

s1 r1

s0 r0

s2 r2

r3s3

E2E

Figure 9. The d3 data set at the depth z1. The ellipse illustrates the application of the E2E1
operators to join the two data sets at ms,mr , tm0 . This diagram illustrates the downward
continuation of d3 to form d̃3 at depth z1 as in theorem 8.3. The grey paths extending from
z1 to the surface illustrate the modelling of d3 from d̃3 with d̃3 acting as a contrast source or the
estimation of d̃3 from d3.

Remark 8.2. If we replace D2
t a in (97) with −1 and the second scattering point is at the

surface z = 0 then (96) becomes,

d̃S
3 (0, s, r, t) = −Q∗

−,s(0)Q∗
−,r (0)

∫
ds ′

∫
dr ′Q∗

−,s ′(0)Q∗
−,r ′(0)δ(s ′ − r ′)

× d̃1
(
0, s ′, r,

t· ) (t)∗ d̃1
(
0, s, r ′,

t· )
, (97)

returning to observables via Q∗
−,s(0)Q∗

−,r (0). Noting that Q∗
−,s(0)Q∗

−,r (0)d̃1(0, s, r, t) =
d1(s, r, t) gives

dS
3 (s, r, t) = −

∫
ds ′

∫
dr ′d1

(
s ′, r,

t· ) (t)∗ d1
(
s, r ′,

t· )
δ(s ′ − r ′) (98)

relating our method to the surface-related multiple elimination (SRME) procedure of Fokkema
and van den Berg [14, chapter 12]. This is illustrated in figure 7.

The following theorem describes the relation between the internal multiple estimated at
the surface through (83) given in theorem 6.1 and the estimate of d̃3 defined in (96).

Theorem 8.3. Let the data be modelled by the forward scattering series (47) for M = 2. Then
there is the following correspondence between the leading-order internal multiple modelled
at the surface and d̃3

d3(s0, r0, t0) = Q∗
−,r0

(0)Q∗
−,s0

(0)

∫ ∞

0
dz1

(
H(0, z1)d̃3

(
z1,

s·, r·, t· ))
(s0, r0, t0). (99)

The theorem is illustrated in figure 9.
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We begin by returning to (76),

δu−,1(z1,m, ta, 0, s0) = −1

4
D2

ta
Q∗

−,s0
(0)

∫ ∞

z1

dz2

∫
ds2

∫
dr2

∫
R

dt0

∫
R

dt ′

G−(z1,m, ta − t ′ − t0, z2, r2)

∫
ds1

∫
R

dts1G−
(
0, s0, ts1 , z1, s1

)
×G−

(
z1, s1, t

′ − ts1 , z2, s2
)
Q−,r2(z2)Q−,s2(z2)(E2E1a)(z2, s2, r2, t0), (100)

assuming a point source and using relation (23); the time notation is illustrated in figure 6. We
then change the order of integration in preparation for substituting H,

δu−,1(z1,m, ta, 0, s0) = −1

4
D2

ta
Q∗

−,s0
(0)

∫
ds1

∫
R

dts1G−
(
0, s0, ts1 , z1, s1

)
×

{∫ ∞

z1

dz2

∫
ds2

∫
dr2

∫
R

dt0

∫
R

dt ′G−(z1,m, ta − t ′ − t0, z2, r2)

×G−
(
z1, s1, t

′ − ts1 , z2, s2
)
Q−,r2(z2)Q−,s2(z2)(E2E1a)(z2, s2, r2, t0)

}
.

(101)

Substituting H (cf (74)), for the two G−(z1, x2) propagators leads to the simplification

δu−,1(z1,m, ta, 0, s0) = Q∗
−,s0

(0)

∫
ds1

∫
R

dts1G−
(
0, s0, ts1 , z1, s1

)
× d̃1

(
z1, s1,m, ta − ts1

)
, (102)

where we have substituted d̃1 (given in lemma 8.1) for the expression in braces in (101). The
same sequence of steps applied to (80) gives

d3(s0, r0, t4) = 1

4
D2

t4

∫ ∞

0
dz1

∫
dr1

∫
dtr1 Q∗

−,r0
(0)G−

(
0, r0, tr1 , z1, r1

)
×

∫
dms

∫
dmr Q∗

−,ms
(z1)

∫
R

dta d̃1
(
z1,ms, r1, t4 − ta − tr1

)
× (E1a)(z1,ms,mr)Q

∗
−,mr

(z1)δu−,1(z1,mr, ta, 0, s0), (103)

where we have also interchanged the order of integration. Substituting the expression for
δu−,1 from (102) into (103) and re-ordering the Q operators and the G− propagators results in

d3(s0, r0, t4) = D2
t4
Q∗

−,r0
(0)Q∗

−,s0
(0)

∫ ∞

0
dz1

∫
dms

∫
dmr Q∗

−,ms
(z1)(E1a)(z1,ms,mr)

×Q∗
−,mr

(z1)

∫
R

dtaG−(0, z1)d̃1
(
z1,ms,

r1· , t4 − ta−
tr1· )

×G−(0, z1)d̃1
(
z1,

s1· ,mr, ta−
ts1· )

. (104)

Combining the two G− propagators into a single H operator gives the result.
Equation (99) is equivalent to (75) with d̃3 taking the place of the contrast source.

Theorem 8.4. Assume the inverse scattering series (62) for M = 2. If we replace d1 in (92)
in lemma 8.1 by d and a in equation (96) for d̃3 by a1 then

〈a3(z, x)〉 = (
R1J

−1
̄−1R2D
−2
t d̃3

)
(z, x). (105)

Recall from the recursion in (61) that

D2
t M0(V̂3U0) = D6

t M0(V̂1L0(V̂1L0(V̂1U0))). (106)
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Theorem 6.1 shows that d3 is third order in V̂1 and thus third order in d. We then estimate V̂3

directly from d3 using (89).

〈a3〉 = R1J
−1
̄−1K∗D2

t d3

= R1J
−1
̄−1R2H(0, z)∗Q∗

−,r (0)−1Q∗
−,s(0)−1D−2

t d3. (107)

The argument in the proof of lemma 8.1 can be repeated for the expression for d3, recalling
that d̃3 is defined for t > 0, in (99) giving

d̃3(z, s, r, t) = (H(0, z)∗Q∗
−,s(0)−1Q∗

−,r (0)−1d3)(z, s, r, t), (108)

for t > 0. We then have

〈a3(z, x)〉 = (
R1J

−1
̄−1R2D
−2
t d̃3

)
(z, x). (109)

An estimate of V̂3 is obtained from 〈a3〉 by

〈V̂3〉 = 1

2
H

(
Q+〈a3〉Q∗

+ Q+〈a3〉Q∗
−

−Q−〈a3〉Q∗
+ −Q−〈a3〉Q∗

−

)
, (110)

so that the estimate of V̂ becomes

V̂ ≈ V̂1 + V̂3. (111)

The estimate 〈a3〉 corrects 〈a1〉 by estimating and subtracting the erroneous contributions
to 〈a1〉 due to the single scattering assumption. Thus artefacts in the image, caused by
internal multiples, are removed by subtracting an image of the multiples from an image of
the full data set. Leading-order internal multiples and primaries have different illumination
properties and therefore the estimated image artefacts will never be entirely accurate. We
anticipate accounting for these illumination differences as well as errors in the estimate of d3

via adaptive subtraction.

Remark 8.5. To estimate d̃3 at depth z1, knowledge of the velocity model is necessary only
to the depth z1; this knowledge is necessary to estimate d̃1 at z1. The same part of the velocity
model is required to form an image at z1, 〈a1〉 or 〈a3〉, from the data. To form a complete
image of the subsurface a velocity model is necessary for all depths.

Remark 8.6. In this remark, we illustrate the estimation of 〈a3〉 with an isochron construction.
In figure 10 a contribution to 〈a3〉 is shown. If the single scattering inverse is applied to the
data d to estimate 〈a1〉, the contributions from a particular source, receiver and time would
be spread over the single scattering isochron (dashed curve). Although this is correct for a
primary reflection, such as that shown with the dot-dash line, it is incorrect for a leading-order
internal multiple, such as that shown with the solid rays. To correct these errors, 〈a3〉 is
estimated and subtracted, adaptively, from 〈a1〉. The horizontal grey line in figure 10 shows
the depth level z1 at which d3 is estimated. The first step in constructing d3 is to remove the
parts of the two data sets in the grey box. This also removes the part of the associated isochron
in the grey box. (These isochrons are the solid curves in the figure.) Next the contribution
spread over the remainder of the isochrons is combined through a time convolution, adding
the contributions from the two single scattering isochrons. This constructs d3 at the depth z1.
Applying the single scattering inverse to this data set spreads the contribution from this point
along the single scattering isochron (dashed curve), giving 〈a3〉. This contribution can then be
subtracted from 〈a1〉.
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Figure 10. A contribution to 〈〈a3〉〉. The solid rays are the triply scattered rays. The dash-dot line
is the singly scattered contribution with the same source and receiver positions as well as slopes.
The dashed curve is the single scattering isochron, for the time t4 corresponding to the amount of
time required to travel along the triply scattered path. The shaded region extends to the depth level
z1 to which the entire wavefield is propagated before generating the image correction via 〈〈a3〉〉.
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Figure 11. A contribution not accounted for by our theory is shown here; this is a doubly scattered
event that would be recorded at the surface. The dashed line illustrates a surface that could generate
such a scattering.

9. Discussion

We propose a method for attenuating artefacts in the image generated by leading-order internal
multiples. We give two main results: a structure for modelling leading-order internal multiples
in (83) and (96), and a system to estimate image artefacts due to leading-order internal multiples
in (109). Our suggested algorithm is illustrated by the following flowchart

d

(a) ↓
a1(z., )

(d)← d̃1(z)
(b)→ d̃3(z)

(d)→ a3(z, .)

(c) ↓ ↓ (c)

d̃1(z + �z)
(+)→ d̃3(z + �z).

� �

�

(e)

In (a) the data are downward continued to the depth z, through lemma 8.1. Following this, in (b)
leading-order internal multiples are estimated via (96). In (c), both the data and the estimated
multiple are propagated to the next depth, again through (92) in lemma 8.1. An image is
formed, in (d), at this depth via (109). The image is also used to obtain an estimate of a used in
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the estimate of d3 from (96). The theory discussed requires knowledge of the velocity model
to the depth z1 of the up-to-down scatter at which the image is formed. In addition, an adaptive
subtraction technique is necessary to compensate for differences in illumination between the
singly and triply scattered data. Throughout this paper we have assumed instantaneous point
sources. When this assumption is not satisfied knowledge of the source wavelet is necessary
because the source appears twice in the estimated first-order internal multiples and only once
in the recorded first-order internal multiples. Under the travel-time monotonicity assumption,
in the absence of caustics our theory is in correspondence with the velocity model independent
theory of Weglein and ten Kroode. In figure 11, a contribution that is not accounted for by
our theory is shown. The event is a doubly scattered event, and thus will contribute to a2,
which is not estimated here. Events like this may appear in seismic data, especially near salt.
However, the contribution from the majority of doubly scattered events is lost to the interior
of the Earth. Such contributions are therefore more important for transmission experiments
than reflection experiments like those studied here.
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Appendix A. Proof of theorem 6.1

The proof rests on the semi-group property (23), discussed previously. The idea is to use this
property to extend the two Green functions in (80) meeting at (z1,ms,mr) to the surface (see
figure 12). The resulting operators are then rearranged to pair the G− operators to substitute
the double-square-root Green function, H. We go through this procedure twice, once for δu1,−
and once for the other elements of (80).

We start by applying the procedure outlined above to δu1,−, beginning with the semi-group
property applied to (76),

δu−,1(z1,mr, ta, 0, s0) = −1

4
D2

ta
Q∗

−,s0
(0)

∫ ∞

z1

dz2

∫
ds2

∫
dr2

∫
R

dt0

∫
R

dt ′
∫

dm′
r

∫
R

dtm′
r

G∗
−(z1,mr, tm′

r
, 0,m′

r )G−(0,m′
r , ta + tm′

r
− t ′ − t0, z2, r2)

×G−(0, s0, t
′, z2, s2)Q−,r2(z2)Q−,s2(z2)(E2E1a)(z2, s2, r2, t0), (A.1)

where ta + tm′
r

is the time required to travel from the source at s0 to the pseudo-receiver at
m′

r , as illustrated in figure 13. We now begin to rearrange the terms in preparation for the H
substitution.

We interchange the order of integration to

δu−,1(z1,mr, ta, 0, s0) = −1

4
D2

ta
Q∗

−,s0
(0)

∫
dm′

r

∫
R

dtm′
r
G∗

−(z1,mr, tm′
r
, 0,m′

r )

×
∫ ∞

z1

dz2

∫
ds2

∫
dr2

∫
R

dt0 H(0, s0,m
′
r , ta + tm′

r
− t0, z2, s2, r2)

×Q−,r2(z2)Q−,s2(z2)(E2E1a)(z2, s2, r2, t0). (A.2)

This completes the manipulations of δu1,−.
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Figure 12. Triple scattering notation and conventions for the extensions via G∗− operators to
propagate to the surface.
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r

z3

z2

z1

z0

tb

r2s2

m′
rs0

tm′ = tm′
r
+ tm′

s

Figure 13. Time variables used in the continuation of the G− operators to the surface.

Next, we apply the same procedure to the second Green function in (80),

d3(s0, r0, t4) = −1

4
D4

t4

∫ ∞

0
dz3

∫
ds3

∫
dr3

∫
R

dt30

∫
R

dta

∫ z3

0
dz1

∫
dms

∫
dmr

∫
R

dt ′3

Q∗
−,r0

(0)G−(0, r0, t4 − ta − t ′3 − t30, z3, r3)Q−,r3(z3)

×Q∗
−,ms

(z1)

∫
dm′

s

∫
R

dtm′
s
G∗

−
(
z1,ms, tm′

s
, 0,m′

s

)
G−(0,m′

s , t
′
3 + tm′

s
, z3, s3)

×Q−,s3(z3)(E2E1a)(z3, s3, r3, t30)(E1a)(z1,ms,mr)

×Q∗
−,mr

(z1)δu−,1(z1,mr, ta, 0, s0), (A.3)

where tm′
s

is defined by analogy with tm′
r

(see figure 13). We now begin to rearrange terms in
(A.3) in preparation of the H substitution.

Since G∗
− and the propagator proceeding it do not have variables in common, we

interchange their order. We also change variables from t ′3 to t ′′3 = t ′3 + tm′
s
, interchanging

the t ′3 and tm′
s

integrations. This results in

d3(s0, r0, t4) = −1

4
D4

t4

∫ ∞

0
dz3

∫
ds3

∫
dr3

∫
R

dt30

∫
R

dta

∫ z3

0
dz1

∫
dms

∫
dmr

∫
R

dta∫
dm′

s

∫
R

dtm′
s

∫
R

dt ′′3 Q∗
−,r0

(0)Q∗
−,ms

(z1)G
∗
−
(
z1,ms, tm′

s
, 0,m′

s

)
×G−

(
0, r0, t4 − ta − t ′′3 + tm′

s
− t30, z3, r3

)
Q−,r3(z3)G−(0,m′

s , t
′′
3 , z3, s3)
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×Q−,s3(z3)(E2E1a)(z3, s3, r3, t30)(E1a)(z1,ms,mr)

×Q∗
−,mr

(z1)δu−,1(z1,mr, ta, 0, s0). (A.4)

We now substitute H from (74) for the time convolution of the two G− kernels above,
interchanging the order of integration, to obtain

d3(s0, r0, t4) = −1

4
D4

t4
Q∗

−,r0
(0)

∫ ∞

0
dz3

∫ z3

0
dz1

∫
dms

∫
dmr

∫
R

dta

∫
dm′

s

∫
R

dtm′
s

Q∗
−,ms

(z1)G
∗
−
(
z1,ms, tm′

s
, 0,m′

s

) ∫
ds3

∫
dr3

∫
R

dt30 H
(
0,m′

s , r0, t4

− ta + tm′
s
− t30, z3, s3, r3

)
Q−,s3(z3)Q−,r3(z3)(E1a)(z1,ms,mr)

× (E2E1a)(z3, s3, r3, t30)Q
∗
−,mr

(z1)δu−,1(z1,mr, ta, 0, s0). (A.5)

We have now extended both Green operators to the surface, what remains is the combining of
the G∗

− operators in (A.5) and (A.2) into an H ∗ operator.
To do this, we substitute (A.2) into (A.5). We then interchange operators to combine the

two G∗
− terms, as well as changing the order of integration to move the ta integral inside the

tm′
s

one and also introduce E2. This results in

d3(s0, r0, t4) = 1

16
D6

t4
Q∗

−,r0
(0)Q∗

−,s0
(0)

∫ ∞

0
dz3

∫ z3

0
dz1

∫ ∞

z1

dz2

∫
dms

∫
dmr

∫
R

dtm0∫
dm′

s

∫
dm′

r

∫
R

dtm′
s

∫
R

dtm′
r
Q∗

−,ms
(z1)(E2E1a)

(
z1,ms,mr, tm0

)
×Q∗

−,mr
(z1)G

∗
−
(
z1,ms, tm′

s
, 0,m′

s

)
G∗

−
(
z1,mr, tm′

r
− tm0 , 0,m′

r

)
×

∫
R

dta

∫
ds3

∫
dr3

∫
R

dt30 H
(
0,m′

s , r0, t4 − ta + tm′
s
− t30, z3, s3, r3

)
×Q−,s3(z3)Q−,r3(z3)(E2E1a)(z3, s3, r3, t30)

∫
ds2

∫
dr2

∫
R

dt0

H
(
0, s0,m

′
r , ta + tm′

r
− ts0 − t0, z2, s2, r2

)
Q−,r2(z2)Q−,s2(z2)

× (E2E1a)(z2, s2, r2, t0). (A.6)

Interchanging the z1 and z3 integrals gives

d3(s0, r0, t4) = 1

4
D6

t4
Q∗

−,r0
(0)Q∗

−,s0
(0)

×
∫ ∞

0
dz1

∫
dms

∫
dmr

∫
R

dtm0

∫
dm′

s

∫
dm′

r

∫
R

dtm′
s

∫
R

dtm′
r
Q∗

−,ms
(z1)

× (E2E1a)
(
z1,ms,mr, tm0

)
Q∗

−,mr
(z1)G

∗
−
(
z1,ms, tm′

s
, 0,m′

s

)
×G∗

−
(
z1,mr, tm′

r
− tm0 , 0,m′

r

) ∫
R

dta

∫ ∞

z1

dz3

∫
ds3

∫
dr3

∫
R

dt30

H
(
0,m′

s , r0, t4 − ta + tm′
s
− t30, z3, s3, r3

)
Q−,s3(z3)Q−,r3(z3)

× (E2E1a)(z3, s3, r3, t30)

∫ ∞

z1

dz2

∫
ds2

∫
dr2

∫
R

dt0

H(0, s0,m
′
r , ta + tm′

r
− t0, z2, s2, r2)Q−,r2(z2)Q−,s2(z2)

× (E2E1a)(z2, s2, r2, t0). (A.7)
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Identifying the fictitious data set, d1, defined in (81) we simplify (A.7) to

d3(s0, r0, t4) = D2
t4

∫ ∞

0
dz1

∫
dms

∫
dmr

∫
R

dtm0

∫
dm′

s

∫
dm′

r

∫
R

dtm′
s

∫
R

dtm′
r

Q∗
−,ms

(z1)(E2E1a)
(
z1,ms,mr, tm0

)
Q∗

−,mr
(z1)G

∗
−
(
z1,ms, tm′

s
, 0,m′

s

)
×G∗

−
(
z1,mr, tm′

r
− tm0 , 0,m′

r

)
Q∗

−,m′
r
(0)−1Q∗

−,m′
s
(0)−1

×
{∫

R

dtad1
(
z1;m′

s , r0, t4 − ta + tm′
s

)
d1

(
z1; s0,m

′
r , ta + tm′

r

)}
. (A.8)

In (A.8), the expression in braces is a time convolution of two fictitious data sets. By shifting
time variables between the two d1 fictitious data sets (the time convolution structure is time
translation invariant) and changing time variables from ta to tb = ta + tm′

r
we arrive at a

structure into which the distribution W defined in the theorem statement can be inserted. This
W distribution is a new field constituent generated through the convolution of the two data
sets on which the two Green functions in (A.8) act. To overlay the distribution W with the
expression in braces in (A.8) we need only make the identification t = t4 + tm′

r
+ tm′

s
.

In the definition of W , we identify a new time variable tm′ = tm′
r

+ tm′
s

in the above
expression for t. To introduce this variable we change variables from tm′

r
to tm′ , substituting

the expression for W from (82) into (A.8)

d3(s0, r0, t4) = D2
t4

∫ ∞

0
dz1

∫
dms

∫
dmr

∫
R

dtm0 Q∗
−,ms

(z1) (E2E1a)
(
z1,ms,mr, tm0

)
×Q∗

−,mr
(z1)

∫
dm′

s

∫
dm′

r

∫
R

dtm′

∫ t ′m

0
dtm′

s
G∗

−
(
z1,ms, tm′

s
, 0,m′

s

)
×G∗

−
(
z1,mr, tm′ − tm′

s
− tm0 , 0,m′

r

)
×Q∗

−,m′
r
(0)−1Q∗

−,m′
s
(0)−1W(z1; s0,m

′
r , t4 + tm′ ,m′

s , r0). (A.9)

The two G∗
− kernels in (A.9) along with the integration in tm′

s
are nearly in the form of the

kernel of the H operator.
The integration in tm′

s
is extended to ∞ as tm′

s
> tm′ results in a negative time in the second

G∗
− making it 0 by the anti-causality of G∗

− (remark 3.1). This allows us to introduce the H
operator, which gives the result.

The d1 data constituents cannot be extracted directly from the data unless ten Kroode’s
travel-time monotonicity assumption is satisfied. If this assumption is not satisfied one could
generate d1 as d1 − D〈a〉, where

(D〈a〉)(z1, s0, r0, t) = −1

4
D2

t4
Q∗

−,r (0)Q∗
−,s(0)

∫ z1

0
dz

∫
ds

∫
dr

∫
R

dt0

×H(0, s0, r0, t − t0, z, s, r)Q−,r (z)Q−,s(z)(E2E1〈a〉)(z, s, r, t0), (A.10)

is the data modelled from an estimate, 〈a〉, of the medium contrast down to the depth z1.

Appendix B. Comparison with the Weglein/ten Kroode approach

If no caustics form in the background medium, and the travel-time monotonicity of ten Kroode
is satisfied, our results can be brought into correspondence with those of Weglein et al [42],
and ten Kroode [38]. To facilitate this comparison, we will write (83) in terms of the data
only.

We begin by recalling from the discussion following theorem 6.1, that the integration
in (mr,ms, tm) is an inner product in these variables. We then identify
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Q∗
−,ms

(z1)Q
∗
−,mr

(z1)H(0, z1) as an operator acting on Q∗
−,m′

r
(0)−1Q∗

−,m′
s
(0)−1W(z1; s0,m

′
r ,

t4 + t ′m,m′
s , r0); this makes up the second entry in the inner product. The first entry in this

inner product is (E2E1a)
(
z1,ms,mr, tm0

)
. An equivalent form of (83) is then

d3(s0, r0, t4) = D2
t4

∫ ∞

0
dz1

(∫
dm′

s

∫
dm′

r

∫
R

dtm′

{∫
dms

∫
dmr

∫
R

dtm0

H
(
0,m′

s , m
′
r , tm′ − tm0 , z1,ms,mr

)
Q−,mr

(z1)Q−,ms
(z1)

× (E2E1a)
(
z1,ms,mr, tm0

)}
Q∗

−,m′
r
(0)−1Q∗

−,m′
s
(0)−1

×W(z1; s0,m
′
r , t4 + t ′m,m′

s , r0)

)
, (B.1)

where H(0,m′
s , m

′
r , tm′ − tm0 , z1,ms,mr)Q−,mr

(z1)Q−,ms
(z1) now acts on (E2E1a) and the

inner product is in the (m′
s , m

′
r , t

′
m) variables. We define (for the expression in braces in (B.1))

d̄1(z1, s, r, t) = −D2
t Q

∗
−,s(0)Q∗

−,r (0)

∫
ds1

∫
dr1

∫
R

dt0 H(0, s, r, t − t0, z1, s1, r1)

×Q−,s1(z1)Q−,r1(z1)(E2E1a)(z1, s1, r1, t0). (B.2)

The quantity d̄1 is not one that can be measured directly from the data. To compute d̄1, the
expression in (89) must be substituted for a to write it in terms of what can be measured, d.

Using the above definition and the expression for d1 in (81), we re-write (B.1) as

d3(s0, r0, t4) = −
∫ ∞

0
dz1

∫
dm′

s

∫
dm′

r

∫
R

dtm′Q∗
−,m′

s
(0)−1Q∗

−,m′
r
(0)−1d̄1(z1,m

′
s , m

′
r , tm′)

×Q∗
−,m′

s
(0)−1Q∗

−,m′
r
(0)−1

∫
R

dtbd1(z1;m′
s , r0, t4 + tm′ − tb)d1(z1; s0,m

′
r , tb),

(B.3)

Although this expression is in terms of three quantities that are directly related to data, we find
that we cannot write (B.3) in terms of the actual data because of the z1 dependence of each of
d̄1 and d1. It is this z1 dependence that separates our approach from that of Weglein and ten
Kroode. In the following remark we summarize how the comparison to their work is made
in the absence of caustics, when the travel-time monotonicity assumption introduced by ten
Kroode is satisfied. This travel-time monotonicity assumption states that the travel time for a
ray leaving a position (z, x) in direction α arrives later than a ray leaving position (z′, x ′) in
direction α whenever z > z′. In his work, ten Kroode assumes this to hold for all x and α; of
course this assumption can be violated.

If the travel-time monotonicity assumption is satisfied, we can replace the z1 dependence
of d in (B.3) with a time windowing procedure. In this case the z1 integral in (B.3) can be
combined with d̄1 resulting in

d3(s0, r0, t4) ≈ −
∫

dm′
s

∫
dm′

r

∫
R

dtm′Q∗
−,m′

s
(0)−1Q∗

−,m′
r
(0)−1d(m′

s , m
′
r , tm′)

×Q∗
−,m′

s
(0)−1Q∗

−,m′
r
(0)−1

∫ ∞

t ′m
dtb d(m′

s , r0, t4 + tm′ − tb)d(s0,m
′
r , tb), (B.4)

with the approximation d ≈ d1, substituting the definition of W . The time windowing is in
the limits of integration.

Remark B.1. To show the correspondence of our method with that discussed in [42, 38],
we specifically compare (B.4) in this paper with (120) of [38]. To do this it is first necessary
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to establish a correspondence between our notation and ten Kroode’s notation. To do this
we compare figure 12 of this paper with figure 4 of [38]. We then identify the t1 variable
of ten Kroode with the tb variable here, the t2 variable of ten Kroode with tm′ and the t3
variable with t4 + tm′ − tb. Then we note that t1 − t2 + t3, which would be the time argument
of dIM

3 in (117) of ten Kroode, is equal to t4 here. This establishes the correspondence between
the time dependence of the final result, (120) in ten Kroode, with (B.4) here.

To make the correspondence between the pseudo-data d here and the integration bounds
on (117) of ten Kroode we observe that Z′

2 of ten Kroode is a time parametrization of the
scattering depth denoted here by z1. Thus, as is done in ten Kroode, under the travel-time
monotonicity assumption, we can replace the restrictions on the depth of the scattering points
in the definition of d with the restriction tb > tm′ on the tb integration. Using this we can
replace d with d in (B.4), which brings it into correspondence with (120) of ten Kroode.

Ten Kroode performs stationary phase analysis in three sets of variables, corresponding
to the position of each of the scattering points. From this he finds that the ray from (in
the notation used here) r2 to m′

r (s3 to m′
s) must follow the same path as that from r2 to mr

(s3 to ms). In the formulation described here this condition is automatically applied through
the relation (23) used to extend the modelled data from the scattering point at z1 to the surface.
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