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The applicability of dip moveout/azimuth moveout in the presence of caustics

Alison E. Malcolm1, Maarten V. de Hoop2, and Jérôme H. Le Rousseau3

ABSTRACT

Reflection seismic data continuation is the computa-
tion of data at source and receiver locations that differ
from those in the original data, using whatever data are
available. We develop a general theory of data contin-
uation in the presence of caustics and illustrate it with
three examples: dip moveout (DMO), azimuth moveout
(AMO), and offset continuation. This theory does not
require knowledge of the reflector positions. We con-
struct the output data set from the input through the
composition of three operators: an imaging operator, a
modeling operator, and a restriction operator. This re-
sults in a single operator that maps directly from the in-
put data to the desired output data. We use the calculus
of Fourier integral operators to develop this theory in
the presence of caustics. For both DMO and AMO, we
compute impulse responses in a constant-velocity model
and in a more complicated model in which caustics arise.
This analysis reveals errors that can be introduced by
assuming, for example, a model with a constant vertical
velocity gradient when the true model is laterally het-
erogeneous. Data continuation uses as input a subset
(common offset, common angle) of the available data,
which may introduce artifacts in the continued data.
One could suppress these artifacts by stacking over a
neighborhood of input data (using a small range of off-
sets or angles, for example). We test data continuation
on synthetic data from a model known to generate imag-
ing artifacts. We show that stacking over input scatter-
ing angles suppresses artifacts in the continued data.
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INTRODUCTION

Data collected in the field are often not ideal for processing.
For example, zero-offset data are important in seismic data
processing, but limitations preclude collecting such data in the
field. In general, we refer to methods to remedy this problem
as data continuation or data mapping. Stolt (2002) gives an
excellent description of why data continuation is necessary as
well as a theory for performing data mapping with a constant-
background-velocity model. Patch (2002) gives an example of
data continuation in medical imaging.

We introduce a theoretical tool to analyze data continuation
in the presence of caustics, focusing on the particular examples
of dip moveout (DMO) and azimuth moveout (AMO). The
mathematical formulation of this tool is given in de Hoop et al.
(2003b) and de Hoop and Uhlmann (personal communication,
2004); the purpose of our paper is to discuss its interpretation,
application, and computation. In comparison with previous
work, we pay special attention to the case in which caustics are
present in the wavefield. In this case, the operator becomes,
locally, significantly more complicated. The region where the
complication occurs depends on the lateral heterogeneity of
the velocity model used. Unlike traditional DMO and AMO
operators, our operator changes along a profile; thus, the com-
putation becomes significantly more complex in regions with
complicated velocity structure. The practical value of this tool
comes in constructing the near-offset data in regions where
the velocity model is complicated.

We use the term data continuation to describe any act
of computing data that have not been collected in the field.
Early examples of data continuation using a partial differ-
ential equation can be found in Goldin (1994) and Goldin
and Fomel (1995). Azimuth moveout is a special case of data
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continuation in which the desired output data are common ac-
quisition azimuth data. It is described for a constant-velocity
model (Biondi et al., 1998) as a transformation of data ac-
quired at a particular offset and acquisition azimuth into (an
approximation of) the data that would have been recorded at
another offset and acquisition azimuth. Similarly, DMO is a
special case of AMO, in which the output offset is simply set to
zero, giving normal-incidence, zero-offset data as the output.
Dip moveout theory has been developed in constant-velocity
media and vertically varying velocity models [see Hale (1991)
for an overview]. We show examples of DMO and more gen-
eral continuation to illustrate our theory.

In our approach to data continuation, we compose a model-
ing and imaging/migration operator to construct an operator
that computes the desired output data from the available input
data. [In a constant-velocity model, our continuation operator
can be thought of as a solution to the partial differential equa-
tion used by Goldin (1994) and Goldin and Fomel (1995).]
This approach has been developed in the absence of caus-
tics (e.g., constant-velocity and constant-velocity-gradient me-
dia) by Bleistein and Jaramillo (2000), Canning and Gardner
(1996), and Stolt (2002). Other related approaches can be
found in Hubral et al. (1996), Santos et al. (1997), and Tygel
et al. (1998). Our theory extends these results by allowing for
both lateral variations in the velocity model and caustics in
the rayfield. The occurrence of caustics is not uncommon in
heterogeneous media (White et al., 1988). Continuation plays
the role of forward interpolation in the process of data regu-
larization, as defined by Fomel (1995, 2003) and Stolt (2002),
required for imaging or inversion.

To unfold the caustics, implicitly keeping track of the con-
tributions from different branches of the caustic, we use the
angle parameterization. In this parameterization the scatter-
ing angle, which is the angle between the source and receiver
rays, takes the place of offset in the traditional parameteriza-
tion and the dip angle takes the place of the midpoint. In the
absence of caustics, a single mapping exists between the tra-
ditional parameterization and the angle parameterization. In
the presence of caustics, a family of maps is required because
the caustics do not unfold in the single map traditionally used.
This is explained further by de Hoop and Brandsberg-Dahl
(2000).

Data continuation is not a stand-alone process; rather, it ex-
ists within a larger framework. Imaging or inversion, migra-
tion velocity analysis, and offset continuation are closely de-
pendent on one another; the operators that connect the three
processes are the annihilators of the seismic data (Stolk and
de Hoop 2002; Brandsberg-Dahl et al., 2003b).

We first outline how the continuation operators are con-
structed and then show three examples: DMO, AMO, and off-
set continuation in shot records. To illustrate the properties of
the first two operators, we compute their impulse responses
in both a constant-velocity model and a gas lens model. For
the offset continuation section, we demonstrate the applica-
bility of our theory by filling in missing offsets in synthetic
shot records. We include three appendices with derivations
of certain parts of this theory in constant-velocity media. Ap-
pendix A contains a derivation of the DMO impulse response
in closed form. In Appendix B we derive an expression for
the amplitudes of the data continuation operator. This result
could also be applied in varying velocity models by using the

rms velocity as a local approximation to the true velocity. In
Appendix C we show that if the input and output data config-
urations are the same, the operator does not change the posi-
tions of reflections in the data.

IMAGING, MODELING, AND RESTRICTION

Data continuation is developed from the composition of
three processes: imaging/migration, modeling, and restriction.
By composition we mean applying one operator after another
and simplifying the result, by integrating over intermediate
phase variables, into a single operator. The continuation pro-
cess is a single operation that computes data for the desired
acquisition geometry from the original data. This is similar to
the derivation of AMO (Biondi et al., 1998), in which the ob-
served data are first migrated to form an image of the subsur-
face (imaging), from which data with another acquisition ge-
ometry are modeled (modeling). The output data are assumed
to have a certain acquisition azimuth, which is accomplished
with the use of a restriction operator.

Composing the operators, given the acquisition surface, re-
quires that we impose certain conditions on the velocity model
(e.g., removing grazing caustics, caustics that are both at and
parallel to the acquisition surface). In our scheme, the first
operator, the imaging operator, is a generalized Radon trans-
form (GRT) [Miller et al. (1987); de Hoop and Brandsberg-
Dahl (2000)]. The second operator models the data for all
possible (continuous) source and receiver positions at the sur-
face, using an image of the subsurface as input. The final op-
erator restricts this modeling operator so that only the de-
sired output data are modeled, rather than the complete data
set. Composing the three operators yields a single operator
that computes the desired output data directly from the input
data. This composition is done in Appendix B for a general
continuation operator in a constant-velocity (or mildly depth
varying) model. All three operators are Fourier integral op-
erators. (Fourier integral operators, which generalize Fourier
integrals, can be used to solve wave equations. These opera-
tors are characterized by an amplitude and a phase, but the
phase is not necessarily linear in the space variables as it is
in Fourier transforms.) Enforcing so-called transversal com-
position of these operators results in a Fourier integral oper-
ator for the composite continuation operator (de Hoop et al.,
2003b). Such transversal composition may be obtained by im-
posing conditions (known as the Bolker conditions) on the
velocity model, which exclude phenomena such as horizontal
wave guiding and encompass the traveltime injectivity condi-
tion of ten Kroode et al. (1998). Subject to the Bolker con-
ditions, we can carry out continuation of the reflections with-
out introducing false reflections. The theory of Fourier inte-
gral operators (Treves 1980a, b; Hörmander 1985a, b; Duis-
termaat, 1996) involves symplectic geometry (the geometry of
phase space), which is exploited to give the proper geometri-
cal tools to assess these conditions.

Our framework is a generalization of the framework of
DMO, such as in Hale (1991). In fact, in a homogeneous
medium the Fourier integral operators of this analysis reduce
to the Fourier transforms used by Hale to derive DMO. If,
however, the velocity model deviates from the constant or
constant-gradient cases, several changes in the theory become
necessary. In such media, angle parameterization, as opposed
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to offset parameterization, is preferred, since it allows the un-
raveling of caustics. Angle parameterization, discussed in de
Hoop et al. (1999), uses the scattering point, scattering an-
gle, and (in three dimensions) scattering azimuth. Thus, for
DMO we replace acquisition offset and acquisition azimuth
by scattering angle and scattering azimuth. In two dimensions
offset is replaced by scattering angle. This is done because
the scattering angle can be used to uniquely specify a pair
of rays, given the subsurface point and migration dip (direc-
tion normal to the reflector), whereas offset along with the
same subsurface parameters does not uniquely determine a
pair of rays. Likewise, we redefine AMO as a transformation
from one acquisition azimuth and subsurface scattering angle
to a new acquisition azimuth and new subsurface scattering
angle.

To relate this parameterization to the acquisition coordi-
nates, we split the traveltime function into branches, each
branch being single valued, where all branches taken together
give the complete set of traveltimes. The suppression of arti-
facts, or false reflections, in the presence of caustics requires
the integration (or stacking) over neighborhoods of the scat-
tering angle and scattering azimuth in the input data. By using
a neighborhood, we are able to discriminate between true fea-
tures and artifacts through the use of multiple samplings of
the same subsurface point. Although the data will sample the
same subsurface point more than once, the data are not simply
redundant; multiple samples, with different scattering angles,
are required to suppress artifacts in the final image. In classi-
cal DMO, offset, which is used for parameterization, is held
constant. In complex media, such a parameterization is not
only inadequate but it also does not allow a straightforward
discrimination between events and artifacts. For examples of
procedures to suppress artifacts in imaging, see Brandsberg-
Dahl et al. (2003a). Artifacts are classified in Stolk (2001).

To reduce the amount of numerical computation required,
as many phase variables as possible should be integrated out
(this is done for a constant-velocity medium in Appendix B).
In general, at least one phase variable (frequency) will al-
ways remain in the final operator. In some cases—for example,
3D DMO in constant media (Bleistein et al., 2000, p. 326)—
additional phase variables must remain in the final operator,
as explained in Appendix A of de Hoop et al. (2003b).

DMO

For DMO, finite-offset data are used in the imaging step,
after which zero-offset (normal-incidence) data are mod-
eled. When the zero-offset modeling is done by restrict-
ing a multiple-offset modeling operator to zero offset, data
from nonnormal incidence are also modeled. We construct
an exploding-reflector modeling operator (Loewenthal et al.,
1976; Claerbout, 1985) and use it in place of the restricted
modeling operator. The exploding-reflector modeling opera-
tor models only a single ray from the scattering point to the
surface point. (From this point onward we refer to this single
ray as the zero-offset ray and the associated data as zero-offset
data.) This means that for DMO the composition of three
operators (imaging, modeling, and restriction) is reduced to
a composition of only two (imaging and exploding-reflector
modeling).

Using the exploding-reflector modeling operator rather
than the full zero-offset modeling operator results in a dif-
ferent amplitude for the final transformation to zero offset
(TZO). A partial explanation for this is that the exploding-
reflector operator models the data along a single ray as if
the wave speed of the medium were half its true value, while
the zero-offset modeling operator models two rays (up- and
downgoing) in the true medium with coincident surface and
subsurface positions. The amplitude of the exploding-reflector
modeling operator differs from that of the restricted multiple-
offset modeling operator (RMO); the RMO models a ray that
travels from the surface to the subsurface applying geometri-
cal spreading, followed by modeling a ray from the subsurface
to the surface applying geometrical spreading once again (re-
sulting in the geometrical spreading squared). In contrast, the
exploding-reflector modeling operator considers the geomet-
rical spreading for just one ray with half the wave speed along
the path.

Homogeneous model

For any operator, we can construct a table relating the input
parameters to the output parameters. In migration, for exam-
ple, this table would relate a point in the subsurface (the out-
put of migration) to the source position, receiver position, and
two-way traveltime (the input to migration). The table can be
parameterized in different ways. For example, midpoint and
offset, or source position and scattering angle, can be used
in place of the source and receiver positions. Fixing differ-
ent sets of these parameters allows us to plot cross-sections
of this table. (We use the term cross-section as analogous with
the cross-sections of a function. The cross-sections of a two-
variable function, f (x, y) say, are the graph (y, f (x0, y)) with
x0 a fixed value and the graph (x, f (x, y0)) with y0 a fixed
value.) As a first example, we plot the standard migration el-
lipse in Figure 1; in this case the midpoint, offset, and travel-
time are fixed, giving us a particular cross-section of the ta-
ble. Similarly, we can fix the source point s, scattering angle
θ , and traveltime T giving what we call an angle isochron.
(A full list of symbols is given in Table 1.) An example of an

Figure 1. Offset DMO in a constant-velocity medium (v =
1.7 km/s). The solid curve is a finite-offset isochron (fixed mid-
point, offset, and traveltime tr + ts); the dashed curve is an
exploding-reflector isochron (fixed zero-offset surface point z
and time t0); the black lines are the rays. The black dot shows
the location of the scattering point, which is the same as that
marked by a dot in Figure 2. DMO maps from the finite-offset
isochron to the exploding-reflector isochron, keeping the scat-
tering point and the direction (migration dip) ξ fixed.
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Table 1. Table of symbols. In general, quantities with a sub-
or superscript s refer to source quantities; r refers to receiver
quantities. Bold symbols are vectors, and an underlined
symbol is a function of other variables.

Symbol Meaning

A(s, x, r) Amplitude of the Green’s function
Bkl Second fundamental tensor
c Smooth background velocity
d0 Distance from source to zero-offset surface

position
Eν , Eθ , Eψ Set of ν, θ , ψ values
F Modeling operator
F ∗ Imaging/migration operator
G(r, t, x) Green’s function for singularities from x to r in

time t
H Hessian of second derivatives for stationary

phase
h, h Half-offset
I Left inverse of modeling operator
J Jacobian of the variable transformation

x1, x2 → η
′
1, η

′
2

k1 Symbol to simplify calculations in
Appendix C

N Normal operator F ∗F
Or × Os Set of source and receiver positions
P(x, y) Parametrix (approximate inverse) of normal

operator
p (q) Vectors from scattering point to source

(receiver)
S2

s Sphere of source ray directions
s Source position
T Two-way time
T(x, y) Traveltime function for ray traveling from

x to y
ts Time along source ray
t0 One-way zero-offset time
v ν in input variables rather than output

variables
X Set of subsurface scattering points
x Subsurface position
x0 Stationary point for x-integration
y Midpoint
z, z Surface position of zero-offset ray
αs Source ray direction
� Spatial gradient of traveltime function
δc Velocity contrast
η′ Fourier variable associated to midpoint
θ Scattering angle
θs Angle between surface and source ray
θ0 Angle from zero-offset ray to surface
� Full amplitude of normal operator
µLS Amplitude factor for normal operator
ν Normalized � (migration dip)
ξ Migration dip
σ ′

1, σ
′
2 Coordinates on level set of T

τ ′ Parameter to fix which level set of T we are on

 Phase function
ϕα Spherical angle measured clockwise from x
ψ Scattering azimuth
ψα Spherical angle measured downward from

x−y-plane
ψ Azimuthal vector
ω Angular frequency
ω0 Stationary point in ω

angle isochron is shown in Figure 2. In this construction, the
receiver position and thus the midpoint and offset are vari-
able. By fixing s at the surface and θ at depth, we look at
a different level set of the table; not surprisingly, an angle
isochron has a different shape than a traditional isochron. Nei-
ther of these isochrons illustrates the DMO operator; rather,
they show the shape of the migration or imaging operator
for the particular velocity model. The dependence of the an-
gle isochron on angle is shown in Figure 7 of de Hoop et al.
(2003b).

Fomel and Prucha (1999) compute the Cheops pyramid in
both the offset and angle domains. This is equivalent to fix-
ing x, the subsurface point, in the migration table and then
plotting midpoint, offset, and traveltime. This pyramid and the
common-angle diffraction curves are shown in Figure 3. The
data continuation involves filling in the missing portions of the
pyramid using the parts that remain. See Fowler (1998) and
Sava and Fomel (2003) for more details on the pyramids.

Traditionally, the impulse response of the DMO operator
is computed for any midpoint by using common-offset data
containing a single Dirac-like impulse as input to the DMO
algorithm. This is equivalent to computing—from fixed offset,

Figure 2. Angle DMO in a constant-velocity medium (v =
1.7 km/s). The black lines are rays; the dashed white line is
the exploding-reflector isochron; the solid white line is the an-
gle isochron. The black dot is the scattering point from Figure
1; this point will have a different contribution to the operator
illustrated in this figure than it does to the operator illustrated
in Figure 1. The angle θ0 between the zero-offset ray and the
surface is variable; it depends on the particular value of the
scattering angle. This illustration shows θ0 close to 90◦, which
generally is not the case. The notation shown in this figure is
used throughout the text and in Appendix A, where the im-
pulse response is computed.

Figure 3. Cheops pyramid. The lines represent curves of con-
stant scattering angle. The blacked-out region illustrates the
removal of some offsets, which will be filled in by the contin-
uation procedure. This plot shows several data surfaces with
fixed depth point x and scattering angle.
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source position (or equivalently midpoint), and traveltime—
the zero-offset traveltime as a function of the distance from
the source position to the zero-offset source–receiver position
(d0 in Figure 1). Figure 1 shows the traditional DMO construc-
tion. For the initial source location, offset, and traveltime, we
compute an isochron (solid white line). From this isochron,
the scattering point x and migration dip ξ are used to shoot
a zero-offset ray. This ray is normal to the exploding-reflector
isochron (dashed line), which is a circle centered at the point z.
Thus, DMO maps data points from a finite-offset isochron to
the exploding-reflector isochron matching the scattering point
and migration dip.

To compute the impulse response in the angle domain (us-
ing the notation of Figure 2), we fix θ , s, and the traveltime
T = ts + tr and compute the one-way zero-offset traveltime
t0 as a function of the distance d0 from the source position
s to the zero-offset source–receiver position z. In a constant-
velocity medium, this impulse response can be computed in
closed form (see Appendix A). Figure 4 shows the impulse
response for angle DMO, as derived in Appendix A. This im-
pulse response is the zero-offset traveltime as a function of the
distance from the source position to the zero-offset position
(the distance d0 in Figure 2). The solid line is the closed-form
solution, and the points are computed numerically with ray
tracing; the spacing between the points is constant (increment
5.73◦) in the take-off angle θ s (defined in Figure 2).

Gas lens model

The gas lens model consists of a vertical velocity gradient
(0.45 s−1) beginning at 1600 m/s with a low-velocity circular
lens with Gaussian parameter variations (maximum velocity
contrast 800 m/s) located at lateral position 4600 m and depth
600 m with a diameter (Gaussian standard deviation) of 600 m.
This model, introduced by Brandsberg-Dahl et al. (2003a), is
based on a feature in the BP Valhall field. Throughout this
subsection, we compare results for this model with those of a
constant-velocity gradient model (the same as the lens model
but without the lens). The background shading of Figures 5
and 6 depicts the velocity model, with darker shading indicat-
ing higher velocity.

Figure 4. DMO impulse response for a constant-velocity
medium, a scattering angle of 45◦, a velocity of 1.7 km/s, and
T = 2 s. The spacing of the points is constant in take-off angle
at the source ray (increments of 5.73◦). Areas of the impulse
response with denser sampling, which are regions of high cur-
vature, can be expected to have relatively high associated am-
plitude. The lowercase s is the position of the source.

In Figure 5, we show the relationship between the shape
of the angle isochron in the lens model (solid line) and that
in the constant-gradient model (dashed line). The introduc-
tion of the lens adds complicated structures to the isochron
not present in the constant-gradient response, but the gross
shape of the main branch remains similar. Figure 6 illustrates
the origin of these features by showing the fixed-scattering-
angle rays that build various portions of the isochron. Even
this simple velocity variation introduces large complications
in these angle isochrons, caused by the complicated geometry
of the rayfield in the vicinity of the lens.

If traditional DMO were performed on data from this
model using the incorrect assumption of a constant veloc-
ity gradient, the results could contain significant errors. One
source of these errors is that the computed zero-offset time
would be calculated for zero-offset rays originating on the
dashed curve rather than the more complicated solid one in
Figure 5. It is possible to create an operator that corrects
such an error. By composing inverse DMO in the constant-
gradient medium with DMO in the more complicated lens
model, an operator can be constructed to reapply DMO with a
more accurate velocity model (e.g., for velocity analysis). The
idea of residual DMO has been developed by Alkhalifah and
de Hoop (personal communication, 2004) in homogeneous
anisotropic media. The composed operator is more efficient
to apply than inverse DMO in the wrong model followed by
DMO in the correct model.

To suppress artifacts inherent in the GRT in the presence
of caustics (Brandsberg-Dahl et al., 2003a), it is necessary to
stack over a range of scattering angles. To illustrate the can-
cellation of these artifacts, we plot the impulse response in the
lens model for three different scattering angles (40◦, 45◦, and
50◦) in Figure 7. For these three scattering angles, the gross
structure present in the constant-gradient case (dashed line)
remains essentially unchanged at the three different angles,
while the more complicated structures change more rapidly.
Small changes in the scattering angle result in differences in
the maximum t0 and d0 as well as detailed changes in the small
loop structure located at t0 ≈ 1 s, d0 ≈ −700 m. Because of
this, stacking over angle will result in a smaller contribution
both at large times and in the loop structure than from regions
in which the impulse response does not change.

Figure 5. Angle isochron in the lens model; scattering angle is
45◦, T = 2 s, source is at 4300 m. The solid line uses the lens
model, and the dashed line uses the constant-gradient model
without the lens. The background shading portrays the veloc-
ity function for the lens model, with darker shading denoting
higher velocity.
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The composition of the imaging operator with the
exploding-reflector modeling operator can be illustrated by
again matching the migration dip and scattering point on a
finite-offset isochron with those on a conventional exploding-
reflector isochron. The counterpart of Figure 1 in the presence
of a lens is shown in Figure 8. For lateral heterogeneity, the
shape of the isochron is evaluated for a particular midpoint-
offset pair and will change with midpoint, unlike its behavior
for a laterally homogeneous medium.

In the lens model (Figure 8), the finite-offset isochron ex-
hibits two regions of multipathing, indicated by the triplica-
tions in the isochron. The exploding-reflector isochron, which
is a snapshot of the wavefront as it passes through the lens,
exhibits only a single region of multipathing. The contribution
to the DMO operator comes from the points where the two
isochrons meet tangentially. The associated rays are the same

as those that meet at the point marked with a circle on the
angle isochron of Figure 5.

DATA CONTINUATION AND AMO

In this more general case, we compose the GRT as the imag-
ing operator, with high-frequency, single-scattering modeling
and a restriction operator specific to the application. This re-
striction operator determines the form of the output data. Al-
though the theory applies more generally, the main ideas may
be understood based on the calculations in a constant-velocity
model given in Appendix B, which also includes a computa-
tion of the amplitudes.

When attempting to fill in missing data, it is important
that the computed data agree well with the true data. There-
fore, the continuation operator must leave the data unchanged

Figure 6. Raypaths in the lens model for a scattering angle fixed at 45◦. This illustrates the origin of the
complicated structure of the angle isochron by showing the rays used to compute it. Where both white
and black rays are present, white rays come from the main branch, while black rays come from inner
(closer to the lens) branches. Each panel shows a different region of the same angle isochron.
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if the input and output source–receiver positions are the same.
We illustrate this is the case in Appendix C, by showing
that the application of a modeling operator after an imaging
operator (for the common-offset case) results in a so-called
pseudodifferential operator, a partial definition of which is a
forward and inverse Fourier transform with an additional mul-
tiplication in the Fourier domain.

Data continuation applies in both two and three dimen-
sions. From the 3D case, a transition from three to 2.5 dimen-
sions is possible, although the 2D case does not follow directly
from the 3D theory. The methodology for the transformation
to 2.5 dimensions in terms of Fourier integral operators is dis-
cussed in Foss et al. (2003).

Homogeneous model

Biondi et al. (1998) construct AMO as a mapping of data
collected at a given offset and acquisition azimuth to data that
would have been collected at a different offset and acquisition
azimuth. We construct AMO as a mapping from an input scat-

Figure 7. Angle DMO impulse responses for the lens model for scattering angles
of (a, b) 40◦, (c, d) 45◦, and (e, f) 50◦. The dashed box in (a), (c), and (e) outlines
the region shown in (b), (d), and (f). The dashed curves in (c) and (d) are the
impulse responses computed in the constant vertical velocity gradient that makes
up the background of the lens model.

tering angle and scattering azimuth to an output surface line
(acquisition azimuth) and scattering angle.

We compute the angle isochrons, as well as our impulse re-
sponse, in three dimensions. In Biondi et al. (1998), the im-
pulse response is the output traveltime as a function of the
change in midpoint between the input and output data. For
our method the impulse response is again the output travel-
time but is now a function of the initial direction of the source
ray, given in terms of the spherical angles ψα (angle clockwise
from x1) and ϕα (angle measured downward from the x3 = 0
plane). In three dimensions, the angle isochron is an extension
of the 2D angle isochron (Figure 2). The AMO operator takes
the initial source and receiver rays and rotates the plane in
which they are contained about the zero-offset ray to the de-
sired output direction. The output rays are then computed in
this new direction with a defined scattering angle, keeping the
zero-offset ray fixed. A closed-form expression for this surface
is derived in Appendix B of de Hoop et al. (2003b); it is shown
in Figure 9 of that paper.

Gas lens model

To illustrate the complications that arise in
a laterally heterogeneous model, we compute
the isochron and AMO impulse response for
a model containing a low-velocity lens, as
done for the constant-velocity model. The
model is similar to that used in the 2D case; it
is scaled down in size to reduce computation
cost. The model consists of a spherical lens
with Gaussian parameter variations of 100 m
diameter (standard deviation of Gaussian);
center at x1 = 600 m, x2 = 600 m, x3 =
100 m; and a maximum velocity contrast of
800 m/s. The model extends to x1 = 2400 m,
x2 = 2400 m, x3 = 800 m with an initial
velocity of 1600 m/s and a vertical gradient of
0.45 s−1.

The angle isochron shown in Figure 9 ex-
hibits a gross shape similar to that in the
constant-velocity case. Just as with the 2D an-
gle isochron (Figure 5), the 3D version has
a complicated shape in which we recognize
the presence of caustics. Figure 10 shows the
AMO impulse response, which bears little re-
semblance to that for the constant-velocity
model. The complications in the AMO im-
pulse response and angle isochrons for the
lens model are significantly greater for the 3D
problem than for the 2D one.

SYNTHETIC DATA EXAMPLE

The following example of data continua-
tion uses the same 2D lens model as for the
DMO impulse response calculations, with the
addition of a reflector from which synthetic
reflection data are computed. The model is
shown in Figure 11, and further details on
its properties can be found in Brandsberg-
Dahl et al. (2003a).
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The goal of this example is to reconstruct data that are miss-
ing from the original acquisition. To demonstrate this, we have
removed all traces with offsets between 0 and 500 m from the
synthetic reflection data set described above. This is illustrated
in Figure 3, where we have deleted a set of offsets from the
pyramid. The algorithm works in the angle domain but recon-
structs missing offsets.

We then use equation B-27 for general continuation to fill in
the data that have been removed. Although the theory is de-
veloped in the common-shot domain, the algorithm accesses
the traces at random. The 2D algorithm is as follows:

for each subsurface point x
for each migration dip direction ξ/‖ξ‖

for each input scattering angle θ i

shoot scattering rays to surface
if the rays reach surface within the data range

get data sample at this position
for each output scattering angle θo

shoot scattering rays to surface
if these rays are in missing data range

add contribution to this point in missing data

Although this algorithm works, it is far from the most ef-
ficient one possible. For example, we shoot many of the rays
more than once, repeating for the output data computations
already done for the input data. An example of a more effi-
cient way to do the computations is based on the escape equa-
tions developed by Sethian (2002).

Figure 8. Fixed-offset isochrons in the lens model. The solid
white line is the finite-offset isochron, and the dashed line is
the exploding-reflector isochron; s, r, and z are the source po-
sition, receiver position, and surface point for the zero-offset
ray, respectively. Compare this figure with Figure 1, which
shows the isochrons in the constant-velocity medium.

Figure 9. Angle isochron in the lens model for a source po-
sition indicated by the asterisk. This is an extension to three
dimensions of the angle isochron shown in Figure 5.

Figure 12 shows the results of this procedure applied to the
data in three synthetic shot records for the model in Figure 11.
The top panels show a shot record reconstructed away from
the influence of the lens. At this position the event is filled in
correctly. Because the event is so simple at this point, inter-
polation would work just as well. The second row of panels
down shows the reconstruction of a shot record on the edge
of the lens. Traces with events from both the dipping and flat
portions of the reflector are missing, making the reconstruc-
tion more difficult. The reconstruction is reasonably success-
ful, although there are some amplitude errors. The third row
of panels shows a shot record for the shot right over the lens.
We have removed the traces containing the caustic and are
attempting to fill them in with the algorithm. Again, the re-
construction is not perfect, but it is considerably better than
what would have been achieved using conventional interpola-
tion schemes. The data shown have been bandpass filtered to
match the frequency content of the original data. We expect
some amplitude inaccuracies because the amplitudes are ob-
tained from equation B-27, which are for a constant-velocity
model, whereas this model is clearly more complicated. In
these examples we have corrected for only the obliquity factor
(| cos θi |2).

The single shot record at the bottom shows the same com-
putation as above it with a range of only 2◦ in scattering angle
for the input data (compared with the section above it, which
uses all the available data). A particularly high-amplitude ar-
tifact appears just below the latest true event in this section.

Figure 10. The AMO impulse response for the lens model.
Compared with the impulse response for DMO (2D case) in
Figure 7, the 3D nature of AMO introduces further complica-
tions in this impulse response.

Figure 11. Velocity model for a synthetic data set. This model
is the same as that used for the 2D DMO examples with the
addition of the reflector. The vertical lines indicate the loca-
tion of the shot points for which shot records are shown in
Figure 12.
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Figure 12. In each row, a different shot record has a block of traces removed and then recon-
structed. The left column shows the input data, the middle column is the reconstructed data,
and the right column is the actual full synthetic shot record. The extra section shown at the
bottom illustrates the presence of artifacts when insufficient stacking is done over the input
scattering angle. The position of the first shot record is at s = 7188 m, the second is at s =
4200 m, and the third is at s = 4560 m. These locations are denoted with vertical lines in the
velocity model (Figure 11).
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Figure 13. The top panel shows the smallest offset available
in the synthetic data set (6 m offset). The bottom panel is
the exploding-reflector data computed from the portion of
the synthetic data set with offsets between −100 and 100 m
removed.

This example can be generated much more quickly than the
other images because so few input angles are used. The other
panels most likely use more angles than necessary, so the opti-
mal data quality and computational time trade-off is probably
somewhere in between the two.

Finally, to mimic the DMO discussion above, we show in
Figure 13 the exploding-reflector data computed from the
original data set (with offsets from −6 to 7 km) while remov-
ing offsets from −100 to 100 m. The smallest offset data (off-
set of 6 m) from the true data set are shown for comparison.
This illustrates the difference between zero-offset modeling
and exploding-reflector modeling.

CONCLUSIONS

We have described and illustrated a method for source–
receiver continuation of seismic data in the presence of caus-
tics. In the absence of caustics, the method reduces to a form
of offset continuation. The computational complexity of this
method depends on the geologic complexity and varies in
space as the geology changes. In the most complex situation
a table must be constructed relating the subsurface and sur-
face parameters, and a search must be performed in this table;
the computational complexity depends on the algorithms used
to perform these steps. Both DMO and AMO are examples of
data continuation that can be obtained from the continuation
framework presented here. It is possible to continue data only
when the subsurface point and reflector orientation generat-
ing the data point are sampled in the original data set. Thus,
the issue of illumination is directly related to data continua-
tion. Similarly, data continuation provides a framework for
estimating the smallest necessary data set by using a combi-
nation of acquisition and data continuation to construct data
needed for migration. An example of when a general data con-
tinuation theory is important is in reducing a multiazimuth
data set with AMO to a common-azimuth data set for efficient
migration through downward continuation.
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APPENDIX A

IMPULSE RESPONSES

DMO

For a constant-velocity model one can derive, in closed
form, the shape of the angle-domain DMO impulse response.
To do this, we fix the source position s, the scattering angle θ ,
and the two-way traveltime T and compute the output time t0

and the source to zero-offset distance d0. We use the notation
defined in Figure 2.

Since we assume the traveltime to be fixed and the medium
to have a constant velocity (straight rays), we have the follow-
ing three relations (see Figure 2):

θr = π − θ − θs, (A-1)

θ0 = π − θ

2
− θs, (A-2)

T = ts + tr . (A-3)

From the law of sines we derive the following relationships:

t0 = T sin θs sin θr

(sin θs + sin θr) sin θ0
, (A-4)

d0 =
vT sin θr sin

(
θ

2

)
(sin θs + sin θr) sin θ0

, (A-5)

which gives both the one-way zero-offset traveltime t0 and the
distance d0 between the source and the zero-offset source–
receiver as a function of the source angle θ s. Figure 4 shows
this impulse response (t0 as a function of d0). In these expres-
sions, θ and T are fixed, while the other angles vary.

Although equations A-4 and A-5 are given in terms of θ s,
θ r, and θ0, it is possible to fully determine both t0 and d0 in
terms of only two angles. Using equation A-1 to substitute for
θ r and A-2 for θ s, equation A-4 simplifies to

t0 =
sin2 θ0 − sin2

(
θ

2

)
2 sin2 θ0 cos

(
θ

2

) . (A-6)

Using equations 44–46 of Fomel (2003) along with equation
A-6 allows us to arrive at the expression

y − z =
vT cos θ0 sin2

(
θ

2

)
2 sin2 θ0 cos

(
θ

2

) , (A-7)

where y = (s + r)/2 is the midpoint. The relation between our
notation and Fomel’s is γ = θ/2, y − y0 = y − z, α = π/2 − θ0.
Using equations A-6 and A-7 for the impulse response rather
than equations A-4 and A-5 results in a symmetric impulse
response, shown in Figure 14. The symmetry disappears in a
nonsymmetric heterogeneous velocity model such as the lens
model. Also, plotting s−z rather than y−z highlights the fact
that we keep the source position s fixed (i.e., we work in the
common-shot domain).

Using equation A-7 along with the expression

h =
vT sin

(
θ

2

)
sin θ0

(A-8)

for the half-offset h allows us to follow Fomel (2003) to arrive
at the DMO smile of Deregowski and Rocca (1981).

In a constant-velocity medium, one can also derive an ex-
pression for the AMO impulse response in closed form. This
is done in Appendix B of de Hoop et al. (2003b), with the final
result given in equation B.9.

APPENDIX B

ON AMPLITUDES

Modeling

We begin with the kernel of the Born modeling operator
[de Hoop et al. (2003b) their equation 7],

F [δc](r, s, t) =
∫

X

∫ t

0
G(r, t − t ′, x) 2c−3(x)∂2

t ′δc(x)

×G(x, t ′, s) dt ′ dx. (B-1)

In the above equation, G(r, t − t ′, x) is the Green’s function for
the ray from the scattering point to the receiver and 2c−3(x)
∂ t′

2δc(x)G(x, t′, s) is the contrast source at the scattering point,
generated by the true source at the surface. The background
velocity is denoted by c(x), δc(x) is the velocity perturbation
that contains the locations of the reflectors, and X is the set of
scattering points in the subsurface. The notation F [δc](r, s, t)
indicates that the operator F acts on the perturbation δc, with
the result being dependent on the variables (r, s, t). We use the
full Born theory; the amplitudes will change if the Kirchhoff
approximation is used in place of Born. For example, Biondi
et al. (1998) use the Zhang-Black (Black et al. 1993) ampli-
tudes, which are different from those used in this paper. The
amplitude in equation 7.2.1 of Bleistein et al. (2000) should
be compared with that of equation B-1. Equation 20 of Black
et al. (1993) compares Black’s DMO amplitudes and Hale’s
DMO amplitudes. Equation 7.6.36 of Bleistein et al. (2000)
compares the Bleistein amplitudes with those of Hale (1991).

From this point onward we will assume that the background
velocity c of the medium is constant. Thus, the Green’s func-
tion is given by

G(y, t, x) = 1
2π

∫
1

4π |y − x|e
−iω(t−T (x,y)) dω, (B-2)

where T (x, y) = |x − y|/c is the traveltime between x and y.
The Green’s function, as written in equation B-2, is the ker-
nel of a Fourier integral operator (Stolk and de Hoop, 2002).
To construct F, we substitute the two Green’s functions into



S12 Malcolm et al.

equation B-1, obtaining

F [δc](r, s, t) = 1
2π

∫
R

1
2π

∫
R

∫ t

0

∫
X

2c−3(−ω2)δc(x)
4π |s − x|4π |x − r|

× e−iω(t−t ′−T (x,r))−iω′(t ′−T (s,x)) dx dt ′ dω dω′. (B-3)

Performing the integration with respect to t′ results in
2 πδ(ω − ω′), so that the final operator is given by

F [δc](r, s, t) = 1
2π

∫
R

∫
X

−ω2 2c−3

16π2|s − x||x − r|
× e−iω(t−T (x,r)−T (s,x))δc(x) dx dω. (B-4)

Imaging

We use the adjoint operator (of the modeling operator) as
the imaging–migration operator (first step toward inversion):

F ∗[u](x) = 1
2π

∫
R

∫
Or×Os

∫
R+

−ω′2 2c−3

16π2|s − x||x − r|

× eiω′(t−T (x,r)−T (s,x))u(r, s, t) dt ds dr dω′, (B-5)

where we use ω′ since we will shortly compose this operator
with the modeling operator given above. We use Or × Os as
the domain of source and receiver positions.

Normal operator

To obtain the correct amplitude characteristics of the out-
put data, we construct the normal operator N = F ∗F so that
we may use the left inverse, (F ∗F )−1F ∗. To do this, we com-
pose the modeling and imaging operators (recalling that c is
constant:

N [δc](y) = 1
2π

∫
R

dω′ 1
2π

∫
R

dω

∫
Or×Os

∫
R+

∫
X[

ω24c−6A(s, x, r)ω′2A(s, y, r)

× e−iω(t−T (r,x,s))+iω′(t−T (r,y,s))]δc(x) dx dt ds dr, (B-6)

where A(s, x, r) = 1/(16π 2|x−s||x−r|) and T(r, x, s) = T (x, r) +
T(s, x). The integration in t results in 2πδ(ω − ω′). Performing
both this integration and that in ω′ results in

N [δc](y) = 1
2π

∫
R

dω

∫
Or×Os

∫
X

[
ω44c−6A(s, x, r)

×A(s, y, r)eiω(T (r,x,s)−T (r,y,s))]δc(x) dx ds dr. (B-7)

We now change variables to the ray directions at the scat-
tering point (αs and αr). We will use subscripts 1, 2, 3 to de-
note the components of a vector in the x1, x2, x3 direction, re-
spectively. To change from (s, r) to (αs ,αr), we compute the
Jacobian:

∂(αs
1, α

s
2)

∂(s1, s2)
∂(αr

1, α
r
2)

∂(r1, r2)
= y2

3

|y − s|4
y2

3

|y − r|4 (B-8)

since

αs
1,2 = y1,2 − s1,2

|y − s| and αr
1,2 = y1,2 − r1,2

|y − r| .

Performing this change of variables, we obtain

N [δc](y) � 1
2π

∫
R

dω

∫
S2
s ×S2

r

∫
X

[
ω4 4c−6A(s, y, r)2

× |y − s|4|y − r|4
y4

3

eiω(T (r,x,s)−T (r,y,s))
]

× δc(x) dx dαs dαr . (B-9)

Underlined symbols indicate a variable is a function of other
variables and S2

s (S2
r ) is the unit sphere on which the direction

of the source (receiver) ray lies. We have expanded A(s, x, r)
about y, using that x ≈ y at stationarity in αr and αs [see
de Hoop and Brandsberg-Dahl (2000, p. 553) and Beylkin
(1985)].

Expanding T(r, x, s) to first order in a Taylor series about y,
we can write the phase as

Γ · (x − y), (B-10)

where � = ∇yT(r, y, s). We also scale the ω variable by |�|−1

and introduce ν = �/|�|. Note that ν corresponds to the mi-
gration dip. The expression thus becomes

N [δc](y) � 1
2π

∫
R

dω

∫
S2
s ×S2

r

∫
X[

4c−6ω4µLS(r,αr , s,αs , y)eiων·(x−y)]
× δc(x) dx dαs dαr , (B-11)

letting

µLS(r,αr , s,αs , y) = A(s, y, r)2 ∂(s, r)
∂(αs ,αr)

|Γ|−5.

We now change variables again to the scattering angle θ ,
scattering azimuth ψ , and migration dip ν [these quantities
are defined in terms of αs and αr by de Hoop and Brandsberg-
Dahl (2000, equation 127)]. This introduces a Jacobian,
∂(αs ,αs)/∂(ν, θ , ψ), which is computed for the general case
by Burridge et al. (1998) and for the homogeneous, isotropic
case by Burridge and Beylkin (1988). In a 3D (homogeneous
and isotropic) space, this Jacobian is sin θ . Thus,

N [δc](y) � 1
2π

∫
R

dω

∫
Eν

∫
Eθ ×Eψ

∫
X[

4c−6ω4µLS(r,αr , s,αs , y) sin θeiων·(y−x)]
× δc(x) dx dν dθ dψ, (B-12)

where we change the sign of ω, noting that
∫

R
eiω(x−y)dω =∫

R
eiω(y−x)dω and that the amplitude is an even function of ω.

We denote by Eν the set of migration dips, by Eθ the set of
scattering angles and by Eψ the set of scattering azimuths.

Letting �(y,ν) = ∫
Eθ ×Eψ

1
2 µLS(r, αr , s, αs , y) sin θ dψ dθ +

(. . .)(y,−ν)[(. . .)(y,−ν) indicates the same expression evalu-
ated at (y, −ν), noting that αr and αs are related to ν], we
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may write

N [δc](y) �
(

1
2π

)3 ∫
R+

ω2 dω

∫
Eν

ω24c−68π2�(y,ν)

×
∫

X

eiων·(y−x)δc(x) dx dν, (B-13)

from which we recognize ω2 dω dν as a measure of integra-
tion in spherical coordinates, where ω takes the place of ra-
dial length and ν1,2 of directions. We see also that ω24c−68π 2

�(y, ν) is the principal symbol (Treves, 1980a; de Hoop et al.,
2003a, Appendix A) of the normal operator, the highest or-
der term in the asymptotic expansion of its amplitude in the
Fourier domain. Since we associate ω with a length, the ω in-
tegration should be over only R+. By noting that the argument
is an even function of ω, we replace the integration over R with
integration over R+ introducing a factor of two. The remaining
ω2 term is the (scaled) second derivative operator. The kernel
of the parametrix (Treves 1980a; de Hoop et al., 2003a, Ap-
pendix A), or the asymptotic approximatation to the inverse,
of the normal operator is

P (x, y) �
(

1
2π

)3 ∫
R+

∫
Eν

(4c−68π2�(y,ν))−1

× eiων·(x−y) dν dω. (B-14)

To construct the linear inversion operator, we compose P
with the original imaging operator to form (F ∗F )−1F ∗:

PF ∗[u](y) =
(

1
2π

)4 ∫
Eν

∫
X

∫
R+

∫
Or×Os

A(s, x, r)2c−3(4c−68π2�(x,ν))−1eiων·(x−y)

×
∫

R

(−ω′2)e−iω′T (r,x,s)u(r, s, ω′) dω′ ds dr dω dx dν,

(B-15)

where the data u are now in the frequency domain. By expand-
ing T(r, x, s) to first order in a Taylor series about x = y, we
can write the phase of the above operator as

iων · (x − y) − iω′∇yT (r, y, s) · (x − y) − iω′T (r, y, s).

We can now perform the integration in x (noting that x ≈ y at
stationarity), giving

(2π)3δ(ων − ω′∇yT (r, y, s))

= (2π)3

ω′2|Γ|2 δ(ω − ω′|Γ|)δ(ν − v), (B-16)

where v = ∇yT (r, y, s)/|∇yT (r, y, s)|. This allows us to inte-
grate out both the ν and ω variables, resulting in

PF ∗[u](y) = 1
8π2

∫
Or×Os

1
|Γ|2 (�(y, v))−1 1

2
c3A(s, y, r)

× 1
π

Re
[∫

R+
u(s, r, ω′)e−iω′T (r,y,s) dω′

]
ds dr. (B-17)

Changing variables from (s, r) to (αs ,αr) as before and sub-
stituting µLS(r, αr , s, αs , y) gives

I [u](y) = PF ∗[u](y)

= 1
16π2

∫
S2
s ×S2

r

c3|Γ|3(�(y, v))−1µLS(r,αr , s,αs , y)
A(s, y, r)

× 1
π

Re
[∫

R+
e−iω′T (r,y,s)u(s, r, ω′) dω′

]
dαs dαr .

(B-18)

We can then perform the integration with respect to ω′, ob-
taining

I [u](y)

= 1
16π2

∫
S2
s ×S2

r

c3|Γ|3(�(y, v))−1µLS(r,αr , s,αs , y)
A(s, y, r)

× u(s, r, T (r, y, s)) dαs dαr . (B-19)

In equation B-18, we recognize the form of equation 27 of
Miller et al. (1987) by noting that

|Γ| =
2 cos

(
θ

2

)
c

and setting µLS = 1. The two equations are not exactly the
same, however; our equation contains a factor sin θ /�. The
sin θ is introduced by changing to the same coordinates as used
by Miller et al. (1987). The factor �−1 is present since we con-
struct the least-squares inverse; it is equal to

∫
Eθ

sin θ dθ .

Continuation

To compute the continuation operator, we now compose I
with the modeling operator:

FI [u](s, r, t) = 1
2π

∫
R

∫
X

1
16π2

∫
S2
s ×S2

r

1
2π

×
∫

R

|Γ|3(�(x, v))−1 −ω2A(s, x, r)
A(s′, x, r′)

×µLS(r′,αr′, s′,αs′, x)e−iω(t−T (r,x,s))−iω′T (r′,x,s′)

× u(s′, r′, ω′) dω′ dαs′ dαr′ dx dω, (B-20)

or, in (θ ′, ψ ′, ν ′) variables, exchanging the order of integration,

FI [u](s, r, t) = 1
2π

∫
R

1
16π2

∫
ν′

∫
Eθ ′×Eψ ′

∫
X

1
2π

×
∫

R

sin θ ′|Γ|3(�(x, v))−1 −ω2A(s, x, r)
A(s′, x, r′)

×µLS(r′,αr′, s′,αs′, x)e−iω(t−T (r,x,s))−iω′T (r′,x,s′)

× u(s′, r′, ω′) dω′ dx dν ′ dθ ′ dψ ′ dω. (B-21)

We now approximate the x-integration using the method
of stationary phase. To do this, we first change variables to
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(τ ′, σ ′
1, σ ′

2), where (σ ′
2, σ ′

2) are coordinates on the level sets of
T(r′, x, s′) and τ ′ is the value of T(r′, x, s′), which fixes the level
set on which we perform the computations. This transforma-
tion is accomplished by noting that

dx =
∣∣∂σ ′

1
x ∧ ∂σ ′

2
x
∣∣

|∇xT ′| dτ ′ dσ ′
1 dσ ′

2, (B-22)

(see de Hoop and Bleistein, 1997) where T′ = T(r′, x, s′).
If r′ and s′ were independent parameters, then the

level sets of T′ would define standard isochrons and
the stationary phase analysis could be found in Bleistein
et al. (2000). If instead we want the level sets of T′ to be
the angle isochrons shown in the text of this paper, we must
change our variables of integration from (ν ′, ψ ′, θ ′) to (s′, ψ ′,
θ ′), which introduces the Jacobian ∂(ν ′, ψ′, θ ′)/∂(s′, ψ′, θ ′). In
this case, s′ is an independent parameter but r′ is no longer
independent since

r′(x, s′, θ ′, ψ ′) = x −
(

x3

α′
3

)
αr ′

,

using the definitions of ψ′ and α′ from de Hoop and
Brandsberg-Dahl (2000):

αr′ = x − s′

|x − s′| −
ψ′ cos

(
θ ′

2

)
sin θ ′ ,

ψ′ = (αs′ · ν ′)αr′ − (αr′ · ν ′)αs′

sin θ ′ . (B-23)

In this parameterization Dxj
T ′ = ∂xj

T ′ + ∂r ′
i
T ′∂xj

r ′
i because of

the x-dependence of r′. In the isochron variables, the phase of
the continuation operator becomes


 = T (r, x(σ ′
1, σ

′
2, τ

′), s) − t − ω′

ω
τ ′. (B-24)

We now continue with the stationary phase analysis in (σ ′
1, σ ′

2),
following Bleistein et al. (2000). From the stationary phase
condition

∂σ ′
1,2


 = ∇xT · ∂x
∂σ ′

1,2
= 0,

it follows that ∇xT is parallel to ∇xT
′ or equivalently, the unit

normal to the input angle isochron n̂′ is equal to the unit nor-
mal n̂ to the output standard isochron. The Hessian of second
derivatives is

H = det
[

∂2T

∂σ ′
1∂σ ′

2

]
= |∇xT |2 det[B′

kl − Bkl],

where we use the relation

∂2T

∂σ ′
l ∂σ ′

k

= ∂2T

∂xi∂xj

∂xi

∂σ ′
k

∂xj

∂σ ′
l

+ ∂T

∂xi

∂2xi

∂σ ′
k∂σ ′

l

(B-25)

and

∂T

∂xi

∂2xi

∂σ ′
k∂σ ′

l

= n̂ · ∂2x

∂σ ′
k∂σ ′

l

|∇xT | = B′
kl|∇xT (r′, x, s′)|,

(B-26)

using the fact that n̂′ = n̂ at stationarity. The second funda-
mental tensor, Bkl is a rotation of the matrix of principle cur-
vatures for the level sets (standard isochrons) of the function
T. The term B

′
kl denotes Bkl in the input parameters [i.e., a ro-

tation of the matrix of principle curvatures for the level sets
(angle isochrons) of T ′]. Equation B-26 gives B

′
kl because (σ

′
1,

σ
′
2) are coordinates on the angle isochrons (level sets of T′).

The transformation of the first term in equation B-25 to Bkl is
explained in Bleistein et al. (2000, section 7.7).

The preceding stationary phase analysis is applicable only
when the Hessian H is nonzero. One example of when H = 0
is when the input and output configurations are the same, in
which case Bkl = B

′
kl. Assuming that H �= 0, we can write the

final continuation operator as

FI [u](s, r, t) =
∫

Eθ ′×Eψ ′

−1
2π

∫
R+

∫
R

1

4
√

2π

×
∫

S′
ω sin θ ′|Γ|3(�(x0, v))−1µLS(r′,αr′, s′,αs′, x0)

× |∂σ1 x ∧ ∂σ2 x|
∣∣∣∣∂(ν ′, ψ ′, θ ′)
∂(s′, ψ ′, θ ′)

∣∣∣∣ A(s, x0, r)

A(s′, x0, r′)
√

H
∣∣∇x0

T ′∣∣
× u(s′, r′, T (r′, x0, s′))eiω(T (r,x0,s)−t)+i π

4 sig(H)

× ds′ dω dτ ′ dθ ′ dψ′. (B-27)

In this expression, x0 is the stationary point [in σ
′
1 and σ

′
2, i.e.,

x0 = x(σ ′0
1 , σ ′0

2 , τ ′),∇x0
T ′ = ∇xT (r′, x, s′)|x=x0

] and sig(H) is
not evaluated as this depends on the exact input and output
configuration.

Equation B-27 can be reduced to equation 7.7.13 of Bleis-
tein et al. (2002) by setting µLS = 1 and noting that |�|3 is the
obliquity factor. This comparison is possible only after noting
the differences between the definitions of the modeling and
inversion operators between this work and that of Bleistein
et al. (2002). As in comparing the inversion formula with that
of Miller et al. (1987), the final two formulas differ by a factor
sin θ ′/

∫
Eθ

sin θ ′.
Other authors have done similar computations to that

shown here for particular input and output geometries. For
example, Biondi et al. (1998) compute the operator that maps
general input data to single-azimuth output data; Black et al.
(1993), Liner (1991), and Bleistein (1990) compute the DMO
operator; and more general continuation is given in Bleistein
et al. (1999), Bleistein and Jaramillo (2000), Fomel and Bleis-
tein (2001), Stolt (2002), and Fomel (2003).

APPENDIX C

PROPERTIES OF FF∗ FOR COMMON OFFSET

Because formal definition of a pseudodifferential operator
is beyond the scope of this paper, we refer the reader to either
Treves’ work (1980a) or Appendix A of de Hoop et al. (2003a)
for the mathematical details. Roughly speaking, an operator is
pseudodifferential if it can be written in the form of a forward
and inverse Fourier transform along with a multiplication by
an amplitude in the Fourier domain. In general, FF ∗ is not a
pseudodifferential operator. In certain cases, however, such as



Data Continuation in General Media S15

when the input and output offsets are constrained to be equal,
FF ∗ does have this property. In this particular case, we write
the kernel of FF ∗ as that of a pseudodifferential operator and
extract its amplitude behavior.

The phase of FF ∗ is given by (see equation B-20)


 = −ω(t − T (r, x, s)) + ω′(t ′ − T (r′, x, s′)), (C-1)

in which x, ω, and ω′ are identified as phase variables. Sub-
jecting equation C-1 to the common offset condition, the
traveltime T and phase function 
 can be rewritten in terms
of midpoints y = (s + r)/2, y′ = (s′ + r′)/2 and offset h (s − r)/2
= (s′ − r′)/2, as


 = −ω(t − T (x, h, y)) + ω′(t ′ − T (x, h, y′)). (C-2)

Treatment of phase variables

The representation of the kernel of the operator FF ∗ con-
tains integrations over x, ω, and ω′. The application of this op-
erator to input data results in integrations over y′ and t′, the
input midpoint and time (but not over h as this is fixed). For
this phase to be that of a pseudodifferential operator, we must
be able to write it in the form

ω′(t ′ − t) + η′ · (y − y′), (C-3)

where ω′t′ and −η′ · y′ are associated with Fourier transforms
and −ω′t and η′ · y are associated with inverse Fourier trans-
forms. Thus, the oscillatory integral representation of the ker-
nel of FF ∗ must contain integrations over (ω′, η′), the Fourier
duals of (t′, y′). To reduce the phase C-2 to the form in equa-
tion C-3, we apply the method of stationary phase to (x3, ω)
and then change variables of integration: (x1, x2) → (η1, η2).

To begin, we perform stationary phase in (x3, ω), the depth
and the output frequency. The stationary phase conditions are

∂


∂ω
= T (x, h, y) − t = 0, (C-4)

∂


∂x3
= ω∂x3T (x, h, y) − ω′∂x3T (x, h, y′) = 0. (C-5)

Equation C-4 determines the isochron on which the scattering
point x lies through its solution x0

3(x1, x2, y, t; h), equation C-5
gives the scaling between the input and output frequencies at
stationarity through its solution

ω0(ω′, x1, x2, y, y′, h) = ω′ ∂x3T (x, h, y′)
∂x3T (x, h, y)

. (C-6)

The determinant of the Hessian H is

−(∂x3T (x, h, y))2, (C-7)

which is unequal to zero since we exclude the direct ray be-
tween the source and receiver (i.e., we require x3 �= 0 in a
constant medium). Since this 2 × 2 determinant is negative,
sig (H) = 0.

The phase at stationarity can be written as


 = ω′(t ′ + T
(
x1, x2, x

0
3(x1, x2, y, t; h), h, y′)) (C-8)

= −ω′( T
(
x1, x2, x

0
3, h, y

)︸ ︷︷ ︸
=t

−T
(
x1, x2, x

0
3, h, y

)

− t ′ + T
(
x1, x2, x

0
3, h, y′)) (C-9)

= −ω′(t − T
(
x1, x2, x

0
3, h, y

)
− t ′ + T

(
x1, x2, x

0
3, h, y′)) (C-10)

= ω′(t ′ − t) + ω′(T (
x1, x2, x

0
3, h, y

)
− T

(
x1, x2, x

0
3, h, y′)). (C-11)

We expand T (x1, x2, x0
3, h, y′) in a Taylor series about the point

y′ = y, which results in

T
(
x1, x2, x

0
3, h, y′) � T

(
x1, x2, x

0
3, h, y

)
+∇y′T

(
x1, x2, x

0
3, h, y′)∣∣

y′=y · (y′ − y). (C-12)

Thus, using the shorthand notation ∇yT for ∇y′T (x1, x2, x
0
3,

h, y′)|y′=y, we have


 � ω′(t ′ − t) + ω′∇yT · (y − y′). (C-13)

To obtain an explicit representation of a pseudodifferential
operator, we change variables (x1, x2) → (η′

1, η
′
2) in accordance

with

η′ = ω′∇y′T
(
x1, x2, x

0
3(x1, x2, y, t; h), h, y′)∣∣

y′=y (C-14)

for given (y, t) and h still fixed. (Note that the x0
3 depen-

dence contains implicitly a dependence on x1, x2.) With this
definition, equation C-13 gives equation C-3. To compute
the Jacobian associated with the transformation (x1, x2) →
(η′

1, η
′
2), we compute

J = ∂(η′
1, η

′
2)

∂(x1, x2)

= ω′2

c2

∣∣∣∣∣∣∣∣∣
∂x1η

′
1 + ∂x3η

′
1
∂x0

3

∂x1
∂x2η

′
1 + ∂x3η

′
1
∂x0

3

∂x2

∂x1η
′
2 + ∂x3η

′
2
∂x0

3

∂x1
∂x2η

′
2 + ∂x3η

′
2
∂x0

3

∂x2

∣∣∣∣∣∣∣∣∣
. (C-15)

Introducing the vectors p = (x − y − h) and q = (x − y + h)
and orienting the system of coordinates so that h = (h1, 0, 0),
we have, upon substituting T = (|q| + |p|)/c,

J = ω′2

c2

×

∣∣∣∣∣∣
−|q|2 + q2

1

|q|3 +
−|p|2 + p2

1

|p|3 +
(

q1q3

|q|3 + p1p3

|p|3
) ∂x0

3

∂x1

q1q2

|q|3 + p1p2

|p|3 +
(

q1q3

|q|3 + p1p3

|p|3
) ∂x0

3

∂x1

q1q2

|q|3 + p1p2

|p|3 +
(

q1q3

|q|3 + p1p3

|p|3
) ∂x0

3

∂x2

−|q|2 + q2
2

|q|3 +
−|p|2 + p2

2

|p|3 +
(

q2q3

|q|3 + p2p3

|p|3
) ∂x0

3

∂x2

∣∣∣∣∣∣.
(C-16)

We solve equation C-4 for x0
3:

x0
3 = 1

2ct

×
√

−2p2
1c

2t2 − 4q2
2 c2t2 + p4

1 + q4
1 − 2p2

1q
2
1 − 2q2

1 c2t2 + c4t4,

(C-17)

noting that q2 = p2 and q3 = p3 = x0
3 and taking the positive

square root as x3 is constrained to be greater than zero. We



S16 Malcolm et al.

then compute

∂x0
3

∂x1
= k1

p3
, where

k1 = −(p1 + q1)
(
q2

2 + x2
3 + q1q2 + |q||p|)

c2t2
(C-18)

∂x0
3

∂x2
= −q2

p3
, (C-19)

where we again use the stationarity condition C-4 in the nu-
merator of equation C-18. Substituting equations C-18 and
C-19 into equation C-16 reduces the Jacobian matrix to

− 1
|q| + q2

1 + q1k1

|q|3 − 1
|p| + p2

1 + p1k1

|p|3 0

∗ − 1
|q| − 1

|p| ,

(C-20)

where the asterisk represents a term that we do not need to
compute since it is multiplied by 0 in the Jacobian. Thus, we
have for the Jacobian

J = ω′2

c2

(
1

|p|2 + 1
|q|2 − p2

1 + k1p1

|p|3
(

1
|p| + 1

|q|
)

− q2
1 + k1q1

|q|3
(

1
|p| + 1

|q|
)

+ 2
|q||p|

)
. (C-21)

After some algebra, it can be shown that

−p2
1 + k1p1

|p|3
(

1
|p| + 1

|q|
)

+ 1
|q||p| = p · q

|p|3|q| , (C-22)

which gives

J = ω′2

c2

(
1

|p|2 + 1
|q|2 + p · q

|p|3|q| + q · p
|q|3|p|

)
. (C-23)

Since we are going to map from (x1, x2) to (η′
1, η

′
2), we require

J−1. Since J �= 0, we find that

J−1 = ∂(x1, x2)
∂(η′

1, η
′
2)

= c2(|q|2|p|2)
ω′2(|q|2 + |p|2)(1 + cos θ)

, (C-24)

where θ is the angle between the source and receiver rays at
the scattering point (i.e., cos θ = (q · p)|q|−1|p|−1).

Treatment of amplitudes

To compute the final amplitude function, we begin with the
initial amplitude A, the product of the imaging and modeling
amplitudes:

A = 1
4π2

ω′2ω2A(x, s, r)A(x, s′, r′), (C-25)

where A(x, s, r) = 1/(8π 2c3|s − x||x − r|).
We now follow the same steps as performed on the phase,

beginning by changing to the midpoint-offset coordinates and

performing stationary phase in (x3, ω), giving

A′ = 1
4π2

ω′4
(

∂x3T
(
x1, x2, x

0
3, y, h

)
∂x3T

(
x1, x2, x

0
3, y′, h

)
)2

× A
(
x1, x2, x

0
3, y, h

)
A

(
x1, x2, x

0
3, y′, h

)√∣∣∂x3T
(
x1, x2, x

0
3, y, h

)∣∣2
. (C-26)

Up to the principal part (for which symbols and amplitudes
are equal), we can assume y ≈ y′ (Treves, 1980a, p. 37), giving

1
4π2

ω′4A2
(
x1, x2, x

0
3, y, h

)∣∣∂x3T
(
x1, x2, x

0
3, y, h

)∣∣ . (C-27)

It is possible to write ∂x3T in the notation defined above as

∂x3T = q3

c|q| + p3

c|p| . (C-28)

The product of the Jacobian of equation C-24 with ∂x3T from
equation C-28 gives equation B-25 of de Hoop et al. (1999).

Multiplying equation C-27 by the Jacobian ∂(x1, x2)/
∂(η

′
1, η

′
2) and combining with the phase yields the kernel of

the final operator:

FF ∗(y, t, y′, t ′) = 1
4π2

∫ ∫ ∫
ω′4A2

(
x1, x2, x

0
3, y, h

)∣∣∂x3T
(
x1, x2, x

0
3, y, h

)∣∣
× ∂(x1, x2)

∂(η′
1, η

′
2)

eiω′(t ′−t)+iη′·(y−y′) dω′ dη′
1 dη′

2, (C-29)

where x1 and x2 are underlined because they are now func-
tions of (η

′
1, η

′
2). It can be shown that the amplitude of this

operator is the reciprocal of that of Miller et al. (1987, their
equation 27), upon changing variables in that equation from ξ
to y, using the Jacobian given in de Hoop et al. (1999). This
amplitude construction can be used to correctly account for
the amplitudes in offset continuation. For that case, one would
fix both the output offset, h = (s − r)/2, and the input offset,
h′ = (s′ − r′)/2 and follow the same procedure as for the case
h = h′.
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