Introduction to Seismic Imaging

Alison Malcolm Department of Earth, Atmospheric and Planetary Sciences MIT

August 20, 2010

Outline

- Introduction
 - Why we image the Earth
 - How data are collected
 - Imaging vs inversion
 - Underlying physical model
- Data Model
- Imaging methods
 - Kirchhoff
 - One-way methods
 - Reverse-time migration
 - Full-waveform inversion
- Comparison of methods

Some organized references

Reviews:

- Symes (09)
- Etgen et al. (09)

Imaging Book:

- Bleistein et al. (01)
- Microlocal Analysis of Reflection Seismology:
 - Stolk (00,01,04,05,06) ... (+ co-authors)
 - http://www.math.purdue.edu/~mdehoop/ 10_topics/

Background:

 Treves (80a,b), Hörmander (83,85), Sjöstrand & Grigis (94), Duistermaat (96), Maslov & Fedoruik (81)

from http://en.wikipedia.org/wiki/Mantle_(geology)

Figure 1.1-3: Example of seismogram, showing accompanying ray paths.

from Stein & Wysession (2003)

from http://utam.gg.utah.edu/stanford/node5.html

from http://www.searchanddiscovery.com/documents/
 2009/10183abeinomugisha/images/fig05.htm

Data Collection

from www.litho.ucalgary.ca/transect_info/snorcle/photos/

Data Collection

from www.litho.ucalgary.ca/transect_info/snorcle/photos/

Data Collection

from http://www.geop.ubc.ca/Lithoprobe/transect/snore97.html

Why is this hard?

travel distance: tens of wavelengths wavepaths: Stolk & Symes (2004)

Imaging vs Inversion

Imaging: Locating the singularities in structure.

$$Am = d$$

 $m \approx A^*d$

we will discuss when A* correctly locates singularities

Inversion: Determining the physical properties of the Earth.

$$\mathbf{m} \approx (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^* \mathbf{d}$$

(least squares)

e.g. Achenbach (73), Landau & Lifshitz (86), Aki & Richards (02)

Conservation of momentum (F = ma):

$$\rho \frac{\mathsf{D}\mathsf{v}_{\mathsf{j}}}{\mathsf{D}\mathsf{t}} = \rho \mathsf{f}_{\mathsf{j}} + \partial_{\mathsf{i}}\sigma_{\mathsf{i}\mathsf{j}}$$

 $\frac{Da}{Dt} = \frac{\partial a}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{a}$ Hooke's Law (linearly elastic, isotropic material):

$$F = -kx$$

$$\sigma_{\mathsf{ij}} = \lambda \epsilon_{\mathsf{kk}} \delta_{\mathsf{ij}} + 2 \mu \epsilon_{\mathsf{ij}}$$

$$\begin{split} \sigma_{ij} \text{ stress tensor} \\ \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \text{ strain tensor} \end{split}$$

Assumptions:

- long wavelength compared to amplitude
- linear elasticity
- smooth displacement
- constant density

Conservation of momentum (F = ma):

$$\rho \frac{\mathsf{D}\mathsf{v}_{\mathsf{j}}}{\mathsf{D}\mathsf{t}} = \rho \mathsf{f}_{\mathsf{j}} + \partial_{\mathsf{i}}\sigma_{\mathsf{i}\mathsf{j}}$$

Elastic Wave Equation:

$$\rho \frac{\partial^2 \mathbf{u}_j}{\partial t^2} = (\lambda + \mu) \partial_j \partial_k \mathbf{u}_k + \mu \nabla^2 \mathbf{u}_j$$

Elastic Wave Equation:

$$\rho \frac{\partial^2 \mathbf{u}_j}{\partial t^2} = (\lambda + \mu) \partial_j \partial_k \mathbf{u}_k + \mu \nabla^2 \mathbf{u}_j$$

Helmholtz decomposition: $\vec{u} = \nabla \phi + \nabla \times \psi$

Elastic Wave Equation:

$$\rho \frac{\partial^2 \mathbf{u}_j}{\partial t^2} = (\lambda + \mu) \partial_j \partial_k \mathbf{u}_k + \mu \nabla^2 \mathbf{u}_j$$

Helmholtz decomposition: $\vec{u} = \nabla \phi + \nabla \times \psi$

$$\begin{split} \partial_{t}^{2}\phi &= c_{p}^{2}\nabla^{2}\phi\\ \partial_{t}^{2}\psi &= c_{s}^{2}\nabla^{2}\psi\\ c_{p} &= \sqrt{(\lambda + 2\mu)/\rho}\\ c_{s} &= \sqrt{\mu/\rho} \end{split}$$

Acoustic (really P-wave only) assumption $(u = \nabla \phi)$

$$\nabla^2 u - \frac{1}{c^2} \partial_t^2 u = f$$
$$u = 0 \qquad t < 0$$
$$\partial_z u|_{z=0} = 0$$

Acoustic (really P-wave only) assumption $(u = \nabla \phi)$

$$\nabla^2 \mathsf{u} - \frac{1}{\mathsf{c}^2} \partial_{\mathsf{t}}^2 \mathsf{u} = \mathsf{f}$$

Theorem (Lions 72)

Suppose that log ρ , log $c \in L^{\infty}(\Omega)$, $f \in L^{2}(\Omega \times \mathbb{R})$. Then weak solutions of the Dirichlet problem exist; initial data $u(\cdot, 0) \in H^{1}_{0}(\Omega), \ \partial_{t}u(\cdot, 0) \in L^{2}(\Omega)$ uniquely determine them.

More info: Symes (09); elastic case: Stolk (00)

But we have discrete data and singular sources!

Acoustic (really P-wave only) assumption $(u = \nabla \phi)$

$$\nabla^2 \mathsf{u} - \frac{1}{\mathsf{c}^2} \partial_{\mathsf{t}}^2 \mathsf{u} = \mathsf{f}$$

Linearize: $c(x) = c_0(x) + \delta c(x)$

Lu = f $L_0u_0 = f$

 L_0 and u_0 use $c_0(x)$

Acoustic (really P-wave only) assumption $(u = \nabla \phi)$

$$\nabla^2 u - \frac{1}{c^2} \partial_t^2 u = f$$

Linearize: $c(x) = c_0(x) + \delta c(x)$
 $Lu = f$
 $L_0 u_0 = f$
L₀ and u_0 use $c_0(x)$
subtract

$$\mathsf{L}_{\mathsf{o}}\delta\mathsf{u} = \delta\mathsf{L}\phi$$

Symes 09 and Stolk 00 give estimates on linearization error

Born approximation

$$L_0 \delta u = \delta L u_0$$
$$\nabla^2 \delta u - \frac{1}{c_0}^2 \partial_t^2 \delta u = \frac{2\delta c}{c_0^3} \partial_t^2 u_0$$

 δu is called the scattered field

this will re-appear next week in the radar tutorial...

Outline

- Introduction
 - Why we image the Earth
 - How data are collected
 - Imaging vs inversion
 - Underlying physical model
- Data Model
- Imaging methods
 - Kirchhoff
 - One-way methods
 - Reverse-time migration
 - Full-waveform inversion
- Comparison of methods

Born Approximation

$$\begin{split} \mathsf{L}_0 \delta \mathsf{u} &= \delta \mathsf{L} \mathsf{u}_0 \\ \nabla^2 \delta \mathsf{u} - \frac{1}{c_0}^2 \partial_t^2 \delta \mathsf{u} &= \frac{2 \delta \mathsf{c}}{c_0^3} \partial_t^2 \mathsf{u}_0 \\ \text{Given source } \mathsf{s}(\mathsf{x},\mathsf{t}) &= \delta(\mathsf{x}-\mathsf{s})\delta(\mathsf{t}) \\ \mathsf{u}_0(\mathsf{x},\mathsf{t}) &= \int_{\mathsf{X}} \int_{\mathsf{T}} \mathsf{G}_0(\mathsf{x},\mathsf{t}-\mathsf{t}_0,\mathsf{x}') \mathsf{s}(\mathsf{x}',\mathsf{t}_0) \mathsf{d}\mathsf{x}' \mathsf{d} \mathsf{t}_0 \\ &= \mathsf{G}_0(\mathsf{x},\mathsf{t},\mathsf{s}) \end{split}$$

 $\delta(x - s)$ is a good approximation on the scale of the wavelength $\delta(t)$ is not; we assume (optimistically) that the source-time signature can be deconvolved

Given source
$$s(x,t) = \delta(x-s)\delta(t)$$

 $u_0(x,t) = \int_X \int_T G_0(x,t-t_0,x')s(x',t_0)dx'dt_0$
 $= G_0(x,t,s)$

$$\begin{split} \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = & \int_{\mathsf{X}} \int_{\mathsf{T}}^{\mathsf{G}_0}(\mathsf{r},\mathsf{t}-\mathsf{t}_0,\mathsf{x})\mathsf{V}(\mathsf{x})\partial_{\mathsf{t}}^2\mathsf{G}_0(\mathsf{x},\mathsf{t}_0,\mathsf{s})\mathsf{d}\mathsf{x}\mathsf{d}\mathsf{t}_0\\ \delta \mathsf{G}(\mathsf{s},\mathsf{r},\omega) = & -\int_{\mathsf{X}} \omega^2\mathsf{G}_0(\mathsf{r},\omega,\mathsf{x})\mathsf{V}(\mathsf{x})\mathsf{G}_0(\mathsf{x},\omega,\mathsf{s})\mathsf{d}\mathsf{x}\\ \mathsf{V}(\mathsf{x}) = & \frac{2\delta\mathsf{c}(\mathsf{x})}{\mathsf{c}_0(\mathsf{x})^3} \end{split}$$

$$\delta \mathbf{G}(\mathbf{s},\mathbf{r},\mathbf{t}) = \int_{\mathbf{X}} \int_{\mathbf{T}}^{\mathbf{G}_{0}} (\mathbf{r},\mathbf{t}-\mathbf{t}_{0},\mathbf{x}) \mathbf{V}(\mathbf{x}) \partial_{\mathbf{t}}^{2} \mathbf{G}_{0}(\mathbf{x},\mathbf{t}_{0},\mathbf{s}) d\mathbf{x} d\mathbf{t}_{0}$$
$$\delta \mathbf{G}(\mathbf{s},\mathbf{r},\omega) = -\int_{\mathbf{X}} \omega^{2} \mathbf{G}_{0}(\mathbf{r},\omega,\mathbf{x}) \mathbf{V}(\mathbf{x}) \mathbf{G}_{0}(\mathbf{x},\omega,\mathbf{s}) d\mathbf{x}$$
$$\mathbf{G}_{0}(\mathbf{x},\mathbf{t},\mathbf{s}) \mathbf{G}_{0}(\mathbf{r},\mathbf{t},\mathbf{x})$$

- data (s, r, t) 5 dimensions
- model x 3 dimensions
- redundancy is used to find $c_0(x)$

linearization is most accurate when c_0 is smooth and δc rough or oscillatory (all relative to the wavelength)

Outline

- Introduction
 - Why we image the Earth
 - How data are collected
 - Imaging vs inversion
 - Underlying physical model
- Data Model
- Imaging methods
 - Kirchhoff
 - One-way methods
 - Reverse-time migration
 - Full-waveform inversion
- Comparison of methods

Approximate Techniques

Kirchhoff

- Integral technique
- Related to X-ray CT imaging
- Generalized Radon Transform
- Conventionally uses ray theory
- One-way
 - Based on a paraxial approximation
 - Usually computed with finite differences

'Exact' Techniques

- Reverse-time migration (RTM)
 - Run wave-equation backward
 - Usually computed with finite differences
 - "No" approximations (to the acoustic, isotropic, linearized wave-equation, for smooth media assuming single scattering)

• Full-waveform inversion (FWI)

- Iterative method to match the entire waveform
- Gives smooth part of velocity model

Kirchhoff Migration WKBJ Approximation

Assume solution form:

$$G_0(x,t) = e^{i\omega\psi(x,t)} \sum_k \frac{A_k(x,t)}{(i\omega)^k}$$

• A_k , and ψ smooth

(when this is convergent is a complicated question) • $e^{i\omega\psi(x,t)}$ oscillatory

• remove frequency dependence

Developed by Wentzel, Kramers, Brillouin, independently in 1926 and by Jeffreys in 1923.

Kirchhoff Migration WKBJ Approximation

Assume solution form:

$$\mathsf{G}_0(\mathsf{x},\mathsf{t}) = \mathrm{e}^{\mathrm{i}\omega\psi(\mathsf{x},\mathsf{t})}\sum_{\mathsf{k}}rac{\mathsf{A}_\mathsf{k}(\mathsf{x},\mathsf{t})}{(\mathrm{i}\omega)^\mathsf{k}}$$

Apply Helmholtz-equation $\nabla^2 G_0 + \frac{\omega^2}{c_0(x)^2}G_0 = 0$ Eikonal equation:

$$(\nabla\psi)^2 = \frac{1}{\mathsf{c}(\mathsf{x})^2}$$

Transport equations:

$$2\nabla\psi\cdot\mathsf{A}_{\mathsf{k}}+\mathsf{A}_{\mathsf{k}}\nabla^{2}\psi=0$$

Kirchhoff Migration WKBJ Approximation

Assume solution form:

$$G_0(x,t) = e^{i\omega\psi(x,t)} \sum_k \frac{A_k(x,t)}{(i\omega)^k}$$

Eikonal equation:

$$(\nabla\psi)^2 = \frac{1}{\mathsf{c}(\mathsf{x})^2}$$

Transport equations:

$$2\nabla\psi\cdot\mathsf{A}_{\mathsf{k}}+\mathsf{A}_{\mathsf{k}}\nabla^{2}\psi=0$$

Nonlinear!

Solve with method of characteristics \Rightarrow ray-tracing.

$$\begin{split} \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) &= \int_{\mathsf{X}} \int_{\mathsf{T}} \mathsf{G}_0(\mathsf{r},\mathsf{t}-\mathsf{t}_0,\mathsf{x}) \frac{2\delta \mathsf{c}(\mathsf{x})}{\mathsf{c}_0(\mathsf{x})^2} \partial_{\mathsf{t}}^2 \mathsf{G}_0(\mathsf{x},\mathsf{t}_0,\mathsf{s}) \mathsf{d}\mathsf{x} \mathsf{d}\mathsf{t}_0 \\ \\ \mathsf{G}_0(\mathsf{x},\mathsf{t}_0,\mathsf{s}) &= \int \mathsf{A}(\mathsf{x},\mathsf{s},\omega) \mathrm{e}^{\mathrm{i}\omega\psi(\mathsf{x},\mathsf{t}_0,\mathsf{s})} \mathsf{d}\omega \end{split}$$

$$\delta G(s, r, t) = \int_{X} \int_{T} G_0(r, t-t_0, x) \frac{2\delta c(x)}{c_0(x)^2} \partial_t^2 G_0(x, t_0, s) dx dt_0$$

$$G_0(x, t_0, s) = \int A(x, s, \omega) e^{i\omega\psi(x, t_0, s)} d\omega$$

$$\bullet c_0(x) \text{ constant } \psi(r, x) = t - \frac{|x-r|}{c}$$

$$\bullet x$$

$$\delta \mathbf{G}(\mathbf{s},\mathbf{r},\mathbf{t}) = \int_{\mathbf{X}} \int_{\mathbf{T}} \mathbf{G}_{0}(\mathbf{r},\mathbf{t}-\mathbf{t}_{0},\mathbf{x}) \frac{2\delta \mathbf{c}(\mathbf{x})}{\mathbf{c}_{0}(\mathbf{x})^{2}} \partial_{\mathbf{t}}^{2} \mathbf{G}_{0}(\mathbf{x},\mathbf{t}_{0},\mathbf{s}) d\mathbf{x} d\mathbf{t}_{0}$$

$$\mathsf{G}_0(\mathsf{x},\mathsf{t}_0,\mathsf{s}) = \int \mathsf{A}(\mathsf{x},\mathsf{s},\omega) \mathrm{e}^{\mathrm{i}\omega\psi(\mathsf{x},\mathsf{t}_0,\mathsf{s})} \mathrm{d}\omega$$

• $c_0(x)$ constant $\psi(r, x) = t - \frac{|x-r|}{c}$ • $c_0(x)$ no caustics $\psi(r, x) = t - T(r, x)$ • x_0 • x_0

$$\delta \mathbf{G}(\mathbf{s},\mathbf{r},\mathbf{t}) = \int_{\mathbf{X}} \int_{\mathbf{T}} \mathbf{G}_{0}(\mathbf{r},\mathbf{t}-\mathbf{t}_{0},\mathbf{x}) \frac{2\delta \mathbf{c}(\mathbf{x})}{\mathbf{c}_{0}(\mathbf{x})^{2}} \partial_{\mathbf{t}}^{2} \mathbf{G}_{0}(\mathbf{x},\mathbf{t}_{0},\mathbf{s}) d\mathbf{x} d\mathbf{t}_{0}$$
$$\mathbf{G}(\mathbf{x},\mathbf{t}_{0},\mathbf{s}) \approx \int \mathbf{A}(\mathbf{x},\mathbf{s},\omega) \mathbf{e}^{\mathbf{i}\omega\psi(\mathbf{x},\mathbf{t}_{0},\mathbf{s})} d\omega$$

$$\delta \mathbf{G}(\mathbf{s},\mathbf{r},\mathbf{t}) = \int_{\mathbf{X}} \int_{\mathbb{R}} \omega^2 \underbrace{\mathbf{A}(\mathbf{x},\mathbf{s},\omega) \mathbf{A}(\mathbf{r},\mathbf{x},\omega) \frac{2\delta \mathbf{c}(\mathbf{x})}{\mathbf{c}_0(\mathbf{x})^2}}_{\mathbf{C}_0(\mathbf{x})^2}$$

 $e^{i\omega(t-T(x,r)-T(x,s))}dxd\omega$

Kirchhoff Migration WKBJ Modeling Formula

$$\begin{split} \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) &= \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s},\omega) \mathrm{e}^{\mathrm{i}\omega(\mathsf{t}-\mathsf{T}(\mathsf{x},\mathsf{r})-\mathsf{T}(\mathsf{x},\mathsf{s}))} \mathrm{d}\mathsf{x} \mathrm{d}\omega \\ \mathsf{S}_{\psi} &= \{(\mathsf{x},\mathsf{s},\mathsf{r},\mathsf{t},\omega) | \mathsf{t} = \mathsf{T}(\mathsf{x},\mathsf{r}) + \mathsf{T}(\mathsf{s},\mathsf{x})\} \end{split}$$

Assume B independent of ω

$$\delta \mathbf{G}(\mathbf{s},\mathbf{r},\mathbf{t}) = \int_{\mathbf{X}} \int_{\mathbb{R}} \omega^2 \mathbf{B}(\mathbf{x},\mathbf{r},\mathbf{s}) \delta''(\mathbf{t} - \mathbf{T}(\mathbf{x},\mathbf{r}) - \mathbf{T}(\mathbf{x},\mathbf{s})) d\mathbf{x}$$

This is a Generalized Radon Transform

Kirchhoff Migration WKBJ Modeling Formula

$$\delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s}) \delta''(\mathsf{t} - \mathsf{T}(\mathsf{x},\mathsf{r}) - \mathsf{T}(\mathsf{x},\mathsf{s})) \mathsf{d}\mathsf{x}$$

$$\begin{split} \mathsf{G}(\mathsf{x},\mathsf{t}_0,\mathsf{s}) &\approx \int \mathsf{A}(\mathsf{x},\mathsf{s},\omega) \mathrm{e}^{\mathrm{i}\omega\psi(\mathsf{x},\mathsf{t}_0,\mathsf{s})} \mathsf{d}\omega \\ & \Downarrow \\ \mathsf{G}(\mathsf{x},\mathsf{t}_0,\mathsf{s}) &\approx \int \mathsf{A}(\mathsf{x},\mathsf{s},\theta) \mathrm{e}^{\mathrm{i}\psi(\mathsf{x},\mathsf{t}_0,\mathsf{s},\theta)} \mathsf{d}\theta \end{split}$$

 $heta \in \mathbb{R}^{2\mathsf{n}-1}$ (n spatial dimension) ψ homogeneous in heta

$$\mathsf{S}_\psi = \{(\mathsf{x},\mathsf{s},\mathsf{r},\mathsf{t}, heta) |
abla_ heta \psi = \mathbf{0}\}$$

$$\begin{split} \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = & \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s},\omega) \mathrm{e}^{\mathrm{i}\omega(\mathsf{t}-\mathsf{T}(\mathsf{x},\mathsf{r})-\mathsf{T}(\mathsf{x},\mathsf{s}))} \mathrm{d}\mathsf{x} \mathrm{d}\omega \\ \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = & \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s},\theta) \mathrm{e}^{\mathrm{i}\psi(\mathsf{x},\mathsf{t}_0,\mathsf{r},\mathsf{s},\theta)} \mathrm{d}\mathsf{x} \mathrm{d}\theta \\ & \mathsf{F}: \delta \mathsf{c} \to \delta \mathsf{G} \end{split}$$

$$\begin{split} \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = & \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s},\theta) \mathrm{e}^{\mathrm{i}\psi(\mathsf{x},\mathsf{t}_0,\mathsf{r},\mathsf{s},\theta)} \mathsf{d}\mathsf{x} \mathsf{d}\theta \\ & \mathsf{F}: \delta \mathsf{c} \to \delta \mathsf{G} \end{split}$$

F is an FIO if: (Beylkin 85, Rakesh 88)

two rays intersect transversally

no rays transversal to surface

$$\begin{split} \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = & \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s},\theta) \mathrm{e}^{\mathrm{i}\psi(\mathsf{x},\mathsf{t}_0,\mathsf{r},\mathsf{s},\theta)} \mathsf{d}\mathsf{x} \mathsf{d}\theta \\ & \mathsf{F}: \delta \mathsf{c} \to \delta \mathsf{G} \end{split}$$

F is an FIO if: (Beylkin 85, Rakesh 88)

- two rays intersect transversally
- no rays transversal to surface

$$\begin{split} \delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = & \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s},\theta) \mathsf{e}^{\mathsf{i}\psi(\mathsf{x},\mathsf{t}_0,\mathsf{r},\mathsf{s},\theta)} \mathsf{d}\mathsf{x} \mathsf{d}\theta \\ & \mathsf{F}: \delta \mathsf{c} \to \delta \mathsf{G} \end{split}$$

F is an FIO if: (Beylkin 85, Rakesh 88)

- two rays intersect transversally
- no rays transversal to surface

Assuming only single scattering (validity of Born approximation) F models the data.

$$\delta \mathsf{G}(\mathsf{s},\mathsf{r},\mathsf{t}) = \int_{\mathsf{X}} \int_{\mathbb{R}} \omega^2 \mathsf{B}(\mathsf{x},\mathsf{r},\mathsf{s},\theta) \mathsf{e}^{\mathsf{i}\psi(\mathsf{x},\mathsf{t}_0,\mathsf{r},\mathsf{s},\theta)} \mathsf{d}\mathsf{x} \mathsf{d}\theta$$

Recall:

$$B(x, r, s, \theta) = A(x, s, \theta)A(r, x, \theta)\frac{2\delta c(x)}{c_0(x)^2}$$

Remember from Tanya:

 $\operatorname{singsupp}(\mathsf{F}_{\mathsf{c}_0}\delta\mathsf{c})\subset\mathsf{S}_\phi\circ\operatorname{singsupp}(\delta\mathsf{c})$

F maps singluarities in δc along bicharacteristics to singularities in δG

Hörmander (85), chapter 21

Goal: Locate the singularities of δc from δG Requires F^{-1} Recall: data are redundant Least Squares: $F_{LS}^{-1} = (F^*F)^{-1}F^*$ $F^*[\delta G](x) = \int \int \int \omega^2 \overline{B(x, r, s, \theta)} e^{-i\psi(x, t_0, s, r, \theta)} d\theta ds dr$

$$\int_{\mathbf{R}} \int_{\mathbf{S}} \int_{\mathbb{R}^{2n-1}} \omega^{-\mathbf{B}}(\mathbf{x}, \mathbf{r}, \mathbf{s}, \theta) e^{-i \pi (\alpha, \alpha, \beta, \gamma, \theta)} d\theta ds d$$

Kirchhoff Migration

$$\mathsf{F}^{*}[\delta \mathsf{G}](\mathsf{x}) = \int_{\mathsf{R}} \int_{\mathsf{S}} \int_{\mathbb{R}^{2n-1}} \omega^{2} \overline{\mathsf{B}}(\mathsf{x},\mathsf{r},\mathsf{s},\theta) e^{-i\psi(\mathsf{x},\mathsf{t}_{0},\mathsf{s},\mathsf{r},\theta)} d\theta d\mathsf{s} d\mathsf{r}$$

- F* also an FIO
- F*F usually ψDO (Beylkin (85), Rakesh (88), Symes (95))

$$\widehat{\delta c(x)} := F^*[\delta G](x)$$
$$WF((F^*F)^{-1}\widehat{\delta c(x)}) \subset WF(\overline{\delta c(x)})$$
$$F^* \text{ correctly positions singularities}$$

Kirchhoff Migration When F^{*}F is not ΨDO

For F^*F to be ΨDO ten Kroode et al. (98)

- complete data coverage (s, r form an open 4D manifold)
- traveltime injectivity condition
 ((s, σ, r, ρ, t) determine x uniquely)
 When F*F not ΨDO there will be artifacts

More detail: Stolk (00a), Symes (09), Nolan & Symes (97), de Hoop et al. (03), Stolk & Symes (04)

Kirchhoff Migration Artifact Example

A Deep-Earth Example

van der Hilst et al (2007)

These waves travelled at least 6000 km (most much more)!!

J. D. Achenbach.

Wave propagation in elastic solids. North-Holland, Amsterdam, 1984.

K. Aki and P. G. Richards.

Quantitative seismology: theory and methods, volume 1. University Science Books, San Francisco, 2002.

G. Beylkin.

The inversion problem and applications of the generalized radon transform. Comm. Pure Appl. Math., XXXVII:579–599, 1984.

G. Beylkin.

The inversion problem and applications of the generalized Radon transform. Communications on Pure and Applied Mathematics, 37:579–599, 1984.

G. Beylkin.

Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized radon transform.

J. of Math. Phys., 26:99-108, 1985.

G. Beylkin and R. Burridge.

The inversion problem and applications of the generalized radon transform. Comm. Pure Appl. Math., 37:579–599, 1984.

N. Bleistein, J. K. Cohen, and J. W. Jr. Stockwell.

Mathematics of multidimensional seismic imaging, migration and inversion. Springer-Verlag, New York, 2000.

M. V. de Hoop, S. Brandsberg-Dahl, and B. Ursin.

Seismic velocity analysis in the scattering-angle/azimuth domain. Geophysical Prospecting, 51:295–314, 2003.

J. J. Duistermaat.

Fourier integral operators. Birkhäuser, Boston, 1996.

John Etgen, Samuel H. Gray, and Yu Zhang.

An overview of depth imaging in exploration geophysics. Geophysics, 74(6):WCA5–WCA17, 2009.

L. Hörmander.

The analysis of linear partial differential operators, volume I. Springer-Verlag, Berlin, 1983.

L. Hörmander.

The analysis of linear partial differential operators, volume III. Springer-Verlag, Berlin, 1985.

L D. Landau and E M Lifshitz.

Theory of Elasticity. Elsevier, Jan 1986.

V. P. Maslov and M. V. Fedoriuk.

Semi-classical approximation in quantum mechanics. Reidel Publishing Company, 1981.

C. J. Nolan and W. W. Symes.

Global solution of a linearized inverse problem for the wave equation. Communications in Partial Differential Equations, 22(5-6):919–952, 1997.

Rakesh.

A linearised inverse problem for the wave equation. Comm. in Part. Diff. Eqs., 13:573–601, 1988.

J. Sjöstrand and A. Grigis.

Microlocal Analysis for Differential Operators : An Introduction. Cambridge University Press, Cambridge, 1994.

S. Stein and M Wysession.

An Introduction to Seismology Earthquakes and Earth Structure. Blackwell Publishing, 2003.

Microlocal analysis of a seismic linearized inverse problem.

Wave Motion, 32:267-290, 2000.

C. C. Stolk.

On the Modeling and Inversion of Seismic Data. PhD thesis, Utrecht University, 2000.

C. C. Stolk and W. W. Symes.

Kinematic artifacts in prestack depth migration. Geophysics, 69(2):562–575, 2004.

W. W. Symes.

Mathematical foundations of reflection seismology. Technical report, The Rice Inversion Project, 1995.

W. W. Symes.

The seismic reflection inverse problem. Inverse Problems, 25:123008, 2009.

A. P. E. ten Kroode, D.-J. Smit, and A. R. Verdel.

A microlocal analysis of migration. Wave Motion, 28:149–172, 1998.

F. Treves.

Introduction to pseudodifferential and Fourier integral operators, volume 1. Plenum Press, New York, 1980.

F. Treves.

Introduction to pseudodifferential and Fourier integral operators, volume 2. Plenum Press, New York, 1980.

R. D. van der Hilst, M. V. de Hoop, P. Wang, S.-H. Shim, P. Ma, and L. Tenorio. Seismostratigraphy and thermal structure of earth's core-mantle boundary region. Science. 315:1813–1817. 2007. $[1,\ 13,\ 2]\ [18,\ 21,\ 27]\ [23,\ 20,\ 3,\ 6,\ 4,\ 5,\ 6,\ 12,\ 16]\ [22]\ [19,\ 15,\ 8,\ 21,\ 24]\ [10,\ 7,\ 25,\ 26]\ [11,\ 17,\ 9]\ [14]$