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ABSTRACT

Knowledge of changes in reservoir properties resulting
from extracting hydrocarbons or injecting fluid is critical
to future production planning. Full-waveform inversion
(FWI) of time-lapse seismic data provides a quantitative ap-
proach to characterize the changes by taking the difference
of the inverted baseline and monitor models. The baseline
and monitor data sets can be inverted either independently
or jointly. Time-lapse seismic data collected by ocean-bot-
tom cables (OBCs) in the Valhall field in the North Sea are
suitable for such time-lapse FWI practice because the ac-
quisitions are of a long offset, and the surveys are well-re-
peated. We have applied independent and joint FWI schemes
to two time-lapse Valhall OBC data sets, which were ac-
quired 28 months apart. The joint FWI scheme is double-
difference waveform inversion (DDWI), which inverts dif-
ferenced data (the monitor survey subtracted by the baseline
survey) for model changes. We have found that DDWI gave
a cleaner and more easily interpreted image of the reservoir
changes compared with that obtained with the independent
FWI schemes. A synthetic example is used to demonstrate
the advantage of DDWI in mitigating spurious estimates of
property changes and to provide cross validations for the
Valhall data results.

INTRODUCTION

Time-lapse seismic monitoring is widely used in reservoir man-
agement in the oil industry to obtain information about reservoir
changes caused by fluid injection and subsequent production.

The seismic responses change according to the fluid saturation
and pressure variations in the reservoir. The optimal goal of
time-lapse seismic is to track fluid flow in areas without well logs
(Lumley, 2001). Conventional analysis of time-lapse seismic data
gives either qualitative dynamic information, such as seismic am-
plitude, or indirect kinematic parameters, such as image shifts and
traveltime differences. This information needs to be transferred to
reservoir properties by reservoir modeling (Lumley and Behrens,
1998). Quantitative 4D techniques are used to estimate reservoir
compaction and velocity changes using time shift and time strain
in the data (Landrø and Stammeijer, 2004; Zadeh et al., 2011). Am-
plitude variation with offset (AVO) analysis inverts partial-angle
stacks for elastic impedance changes (Sarkar et al., 2003; Tatanova
and Hatchell, 2012). However, these methods assume simple sub-
surface structures, and often involve manual interpretation.
Full-waveform inversion (FWI) has the potential to estimate den-

sity and elastic parameters quantitatively (Tarantola, 1984; Mora,
1987; Virieux and Operto, 2009). Subsurface properties are updated
iteratively by fitting data with modeled waveforms, which are gen-
erated by solving wave equations. Ideally, by subtracting the models
inverted from each data set in a series of time-lapse surveys, the
geophysical property changes over time can be quantified. Instead
of analyzing small and large offsets separately as in Zadeh et al.
(2011), FWI naturally takes all types of waves into account, includ-
ing diving waves, supercritical reflections, and multiscattered
waves. The structural depth and velocity changes can be well-rep-
resented in FWI inverted models; therefore, separate analyses are
not necessary, as in conventional time-lapse methods (Landrø
and Stammeijer, 2004). In addition, FWI makes no assumption
about the subsurface structures and involves less manual interac-
tion. However, FWI at the current stage still needs a fairly good
starting model. Many ongoing studies focus on how to relax this
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constraint (AlTheyab and Schuster, 2015; Luo and Wu, 2015;
Warner and Guasch, 2015).
The most straightforward strategy of time-lapse FWI is to per-

form two independent inversions on each data set starting from
the same initial model. The subtraction between models would give
time-lapse model differences assuming the two inversions converge
to a similar level in a similar number of iterations (Zheng et al.,
2011; Routh et al., 2012). However, the convergence levels of wave-
form inversions for individual data sets are affected by data quality
and computational parameters used in the inversion, which may dif-
fer between surveys. Model differences caused by different local
minima between inversions may generate misleading time-lapse im-
ages. One way to mitigate the undesired deviation between models
is to use the final model inverted from the base data set as the initial
model for the monitor inversion. As discussed in Routh et al.
(2012), most parts of the models are already close and the inversion
mainly focuses on the time-lapse difference. However, this is only
true when the baseline FWI is so complete that no extra updates
would be generated through more iterations (Yang et al., 2015).
In practice, we cannot afford an infinite number of iterations,
and so the residuals due to the truncation might leak to the monitor
inversion and mix with the real time-lapse difference. Watanabe
et al. (2005) apply a differential waveform tomography in the fre-
quency domain for crosswell time-lapse data during gas production
and show that the results are more accurate for estimating velocity
changes in small regions than those obtained using the conventional
method. Onishi et al. (2009) apply a similar strategy to conduct dif-
ferential traveltime tomography using crosswell surveys. Denli and
Huang (2009) develop a double-difference waveform inversion
(DDWI) algorithm using time-lapse reflection data in the time do-
main and demonstrate, using synthetic data, that the method has the
potential to produce reliable estimates of reservoir changes. Similar
approaches are also reported by Zhang and Huang (2013) and
Zheng et al. (2011). Several publications have compared the perfor-
mance of the three different strategies with synthetic examples.
Raknes and Arntsen (2014) improve the convergence using a local
regularization term in all three schemes and apply them on a lim-
ited-offset data set. Maharramov and Biondi (2014) compare the
three schemes using frequency-domain solvers with synthetic ex-
amples and also propose using regularization to improve the results.
Asnaashari et al. (2015) conduct a similar comparison study using
synthetics and show that the prior model information makes the tar-
get-oriented time-lapse inversion more robust with the presence of
strong noise. Nonetheless, to our best knowledge, very few large
field data applications of DDWI have been reported.
A major obstruction to successful field data applications of FWI

and DDWI is data acquisition. To recover a model having a broad
wavenumber spectrum, low-frequency and long-offset data are re-
quired, but they are often not available in legacy seismic experi-
ments. Advanced technologies, such as wide-aperture and wide-
azimuth acquisitions, make FWI more feasible nowadays. However,
DDWI requires prestack data subtractions, which impose a higher
standard on time-lapse survey repeatability. One way to obtain such
data is with 4D ocean-bottom cable (OBC) acquisitions using
receiver cables installed on the seafloor. Source and receiver posi-
tioning discrepancies between surveys are significantly reduced
compared with streamer acquisitions. The signal quality is also im-
proved because of better receiver coupling. The repeatability of 4D
OBC acquisitions appears promising for DDWI application.

Since 1998, OBC data have been collected in the Valhall field in
the North Sea (Hall et al., 2005). A permanent OBC system was
installed in 2003 to enable frequently repeated time-lapse surveys
to help manage the field. Due to the wide aperture and high quality
of the surveys, numerous studies on 2D and 3D FWI use Valhall
data (e.g., Sirgue et al., 2009; Prieux et al., 2011, 2013; Liu et al.,
2013; Schiemenz and Igel, 2013). Barkved et al. (2010) discuss the
potential business impact of FWI and time-lapse FWI on Valhall,
but technical details and comparisons between time-lapse FWI ap-
proaches were not presented.
In this paper, we first introduce three time-lapse inversion

schemes: (1) using the same initial model for baseline and time-lapse
inversions; (2) using the final model from a baseline inversion as the
starting model for time-lapse inversion; and (3) DDWI, which uses
the data difference to invert for model changes, starting from the final
baseline inversion model. A 2D synthetic example using the Mar-
mousi model is used to demonstrate how DDWI can improve the
inversion quality by suppressing spurious model perturbations. We
then apply all three schemes to two Valhall data sets collected 28
months apart, one as a baseline and the other as monitor. We compare
the results obtained from all schemes, and we show that DDWI pro-
duces a cleaner and more interpretable image of the reservoir
changes. The mechanism causing the differences between the results
of different inversion schemes is discussed for the synthetic and real
data. Cross validations between synthetic studies and the Valhall ap-
plication enhance the credibility of the DDWI result.

THEORY

The FWI for individual surveys minimizes a cost function of the
difference between the modeled data u and the observed data d

EðmÞ ¼ 1

2
jd − uðmÞj2; (1)

where m is the model parameter (e.g., density, P-, and S-wave
velocities) to be recovered. Gradient-based methods, such as non-
linear conjugate gradient and the Gauss-Newton method have been
adopted in many studies to solve this optimization problem effi-
ciently (Mora, 1989; Pratt et al., 1998; Virieux and Operto, 2009).
The most straightforward manner for time-lapse FWI is to repeat

this process on each individual data set. One can choose the same
starting model for each of the individual inversions. For example, a
smooth velocity model derived from tomography or an intermediate
velocity model after a few iterations of baseline FWI can be used for
the inversions of the baseline and monitor data sets. The differences
between the final models are considered as time-lapse changes. We
label this scheme I. It is also reasonable to choose the final model of
the baseline inversion as the starting model for inverting monitor
data sets to achieve faster convergence. The differences between
the final monitor model and the starting monitor model (which
is also the final baseline model) are considered as time-lapse
changes. This is labeled scheme II. We remark here that schemes
I and II are using conventional FWI, while the only difference is the
starting model for the monitor inversion.
Other than applying conventional FWI, the data sets can be in-

verted jointly. An efficient way to do a joint inversion is to apply
DDWI. Similar to scheme II described above, DDWI starts from a
model obtained from the baseline inversion. To include both data
sets, the cost function is modified to
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EðmÞ ¼ 1

2
jðdmonitor − dbaselineÞ − ðumonitorðmÞ − ubaselineðm0ÞÞj2;

(2)

where dmonitor and dbaseline are the monitor and baseline data, respec-
tively, and umonitor is the synthetic data calculated from the model m
that is updated in every iteration. We denote by ubaseline, the syn-
thetic data calculated from the DDWI starting model m0, which
is the final model from the baseline inversion. Because m0 is not
updated in DDWI, ubaseline does not change throughout the inversion
process. Equation 2 can be rewritten as

EðmÞ ¼ 1

2
jumonitor − dsynj2; (3)

where dsyn ¼ ubaseline þ ðdmonitor − dbaselineÞ. DDWI looks for the
changes in the model that can explain the waveform changes be-
tween time-lapse data sets. It reduces the effects of uncertainties
in the baseline model. The mechanism and implementation of
the method are well-explained by Zhang and Huang (2013) and
Yang et al. (2015).
From a computational point of view, scheme I seems to be the

most expensive method because it is twice as costly as a regular
FWI. Scheme II starts from a much closer model, and so requires
a smaller number of iterations to converge. The cost of DDWI is
similar to that of scheme II because of the closer starting point.
The only extra step is to prepare the data dsyn, which includes
one batch of forward simulations using the final FWI model from
the baseline inversion and data subtraction.

EXAMPLE USING SYNTHETIC DATA

In this section, we use the Marmousi model to illustrate the differ-
ent behaviors of the inversion schemes introduced above and to pro-
vide context for interpreting our real data results in later sections.
Figure 1a shows the true baseline P-wave velocity model. In the
time-lapse velocity model, a thin layer of P-wave velocity increase

is placed in the second anticline under the salt layers (bright
wedges) to simulate a hardening reservoir as shown in Figure 1b.
The maximum magnitude of velocity change is 200 m∕s. We use
five shots, marked by white stars in Figure 1a, on the water surface
and 400 receivers evenly spaced at the water bottom to cover the
entire area. The same source and receiver geometry is used for base-
line and monitor surveys to mimic a time-lapse OBC acquisition.
Synthetic baseline and monitor data are generated with a finite-dif-
ference acoustic-wave equation solver. The source time function is a
standard Ricker wavelet centered at 6 Hz.
We use a Gaussian window (radius of 600 m) to blur the Mar-

mousi model (Figure 2a) to obtain a smoothed version as the start-
ing model for the baseline inversion. A time-domain FWI solver is
adopted, and the true source function is used as the input wavelet to
invert for all available frequencies (2–10 Hz) at once. The raw shot
gathers are used with all offsets and wave events included (i.e., no
data windowing). The conjugate gradient method is used to invert
for the P-wave velocity model. After 90 iterations, we obtain the
recovered baseline model shown in Figure 2b. It is slightly blurred
compared with the true model due to the limited resolution of the
data, but the long-wavelength components are fairly accurate. The
dominant features of the structures are well-recovered, whereas
some of the deeper layers underneath the salt are less resolved be-
cause of lower energy penetration.
Following scheme I, we can invert the monitor data set using the

same initial model (Figure 2a) for the same number of iterations.
Figure 3a shows the model difference between these final time-
lapse and baseline models. The reservoir change is recovered to
some extent; however, model differences also exist almost every-
where outside of the reservoir layer. Some of the false changes
(e.g., in the salt layers) are as strong as the real changes. The non-
linear behavior of the inversion makes it difficult to avoid such false
differences between two inversions. The model subtraction is not
able to differentiate between the differences caused by time-lapse
effects and the differences caused by these false changes.
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Figure 1. (a) True P-wave velocity baseline model. The reservoir is
located in the anticline below the salt layers (white wedges) that
have the highest velocities. Five stars mark the source locations that
are used in the baseline and monitor acquisitions. (b) True time-
lapse P-wave velocity changes. The layer is located in the reservoir
and has a uniform velocity increase of 200 m∕s, simulating a hard-
ening effect when the reservoir is compacting.
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Figure 2. (a) The starting velocity model for FWI. The model is
obtained by smoothing the true velocity model with a Gaussian win-
dow. (b) The velocity model obtained after 90 iterations of FWI.
Details of the layers are significantly improved. The color scales
in both figures are the same.
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We can also choose to invert the monitor data set starting from the
recovered baseline model (Figure 2b) as described in scheme II.
Figure 3b shows the model difference between the final time-lapse
and the baseline models of Figure 2b. The nonreservoir related
differences are stronger than those in Figure 3a because effectively
more iterations are applied to update these parameters. Therefore,
parameters that are less well-estimated in the previous baseline in-
version would exhibit larger magnitudes in the model difference.
This explains why the real changes in the reservoir layer are satu-
rated by the strong updates nearby in Figure 3b.
Starting from the same baseline model of Figure 2b, DDWI

(scheme III) is applied to find the time-lapse changes. Figure 3c
shows the time-lapse changes recovered by subtracting the baseline
model from this final time-lapse model. The image is almost free of
contamination. The clearest feature is the velocity increase within
the reservoir layer. The shape and magnitude of the velocity
changes are well-recovered. Neither the coherent structures in
the shallow part nor the salt layers have any footprint in the image.
This is because, as we stated in the “Theory” section, DDWI only
finds the velocity perturbations that caused the data differences.
Therefore, the parameters that are not completely recovered from
the baseline inversion are not updated at all in DDWI.
Comparing the three images in Figure 3, it is easier to make an

interpretation with the DDWI result. Without the interference from
background structures, tracking the locations of changes is easier. In

addition, because the magnitude of the changes is more accurately
recovered, the reservoir properties inferred from this information
are more reliable.
It is the imperfect nature of inversion that causes the difference

between these methods. Even though the initial model we used here
is not too far from the true model, the parameter estimation would
still not be 100% accurate. The model differences between individ-
ual inversions come from the partially, but not equally, recovered
parameters. Scheme I does not force the consistency of these par-
tially estimated parameters, whereas scheme II lumps the time-lapse
effects and the extra baseline updates together. DDWI removes such
ambiguity by only inverting the data differences and leaving the
imperfectly estimated parameters as it is. Generalizing the interpre-
tation of these acoustic, constant density results to the viscoelastic
field data case are discussed further in the “Discussion” section.

TIME-LAPSE FWI ON VALHALL

The Valhall field sits in the southern part of the Norwegian North
Sea and has been producing hydrocarbons since 1982. Recently,
approved plans could potentially extend its life to 2048 (van Gestel
et al., 2008). The reservoir layer is at a depth of approximately
2400 m, and its thickness ranges from 10 to 70 m. The reservoir
formation consists primarily of high porosity and low permeability
Cretaceous chalk. Pressure depletion of the highly porous rocks
leads to significant reservoir compaction, which drives the produc-
tion and induces the subsidence of the overburden structures
(Barkved and Kristiansen, 2005). Significant 4D seismic time shifts
due to reservoir compaction have been observed in a previous study
by crossmatching of 3D streamer data collected in 1992 and 3D
OBC data collected in 1998 (Hall et al., 2005). Acoustic impedance
changes that reflect the depletion of the reservoir have been derived
from amplitude differences by comparing marine streamer surveys
in 2002 and 1992 (Barkved and Kristiansen, 2005).
To allow for more detailed and frequent analyses of induced 4D

seismic changes, a permanent array, life of field seismic (LoFS),
was installed in 2003 (Barkved and Kristiansen, 2005; van Gestel
et al., 2008). The 4D images produced with the LoFS data provide a
structural framework for identifying undrained areas, managing
existing wells, and analyzing geohazard potentials (Røste al.,
2007; van Gestel et al., 2008). Integrated with reservoir modeling,
LoFS system reduces the uncertainties in reservoir performance pre-
dictions (van Gestel et al., 2011). We expect the constraints on the
reservoir model to be improved by extracting quantitative 4D
changes from the LoFS data with time-lapse FWI (Barkved et al.,
2010). Because FWI includes information on structure and proper-
ties from all the data in the surveys, individual analyses on over-
burden changes, reservoir compaction, and reservoir property
changes are naturally integrated in time-lapse FWI.

Acquisition, repeatability, and preprocessing

As shown in Figure 4, an area of 15 × 8 km is densely covered by
50,000 shots (white points) on a 50 × 50 m grid. The missing shots
in the middle of the acquisition are due to the center platform. Ap-
proximately 2400 receivers are placed a meter into the seafloor
comprising 39 km2 of coverage. The distance between the receivers
along the cable is 50 m, and the distance between the cables is
300 m. To reduce the computation in our FWI practice, only
one of every five receivers is used (spacing of 250 m along the ca-

x (km)

z 
(k

m
)

 

 
Velocity (km/s)a)

b)

c)

0 1 2 3 4 5 6 7 8 9

0

1

2

−0.2

−0.1

0

0.1

0.2

x (km)

z 
(k

m
)

 

 
Velocity (km/s)

0 1 2 3 4 5 6 7 8 9

0

1

2

−0.2

−0.1

0

0.1

0.2

x (km)

z 
(k

m
)

 

 
Velocity (km/s)

0 1 2 3 4 5 6 7 8 9

0

1

2

−0.2

−0.1

0

0.1

0.2

Figure 3. Time-lapse velocity changes recovered by schemes (a) I,
(b) II, and (c) III (DDWI). The differences are obtained by sub-
tracting the final baseline inversion models from the final time-lapse
inversion models for each scheme. The final baseline inversion
models are the same model that is recovered by the baseline inver-
sion. Panels (a) and (b) contain strong artifacts, whereas panel (c) is
clean and localized.
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ble). Only the receivers that are used in both surveys are kept in our
computation; in the end, 380 receivers are used in FWI (blue dots in
Figure 4). The seismic experiment is repeated approximately every
six months. The pressure and displacements are recorded, but only
the pressure data are used in our inversion. The data sets used in this
study are LoFS 10 and LoFS 12, which are 28 months apart.
Minimum preprocessing including denoising and low-pass filter-

ing up to 7 Hz was applied to the raw shot gathers before input to
FWI. No crossmatching was applied between surveys. The diving
waves and reflections were kept in the shot gathers; i.e., no mute
was applied. The positions of the receivers are unchanged between
surveys except several cables were offline in LoFS 12. Shot posi-
tioning is very accurate in both surveys. Here, we use the distance
from the actual shot location to its predesigned position as a mea-
sure of the positioning error. The error distributions are very similar
between LoFS 10 and LoFS 12; 50% of the shots have errors less
than 1.5 m, and 90% are less than 4 m. Because the data residual
needs to be injected on regular grids in finite-difference modeling,
we adopt the method of Hicks (2002) to interpolate and resample
the LoFS 10 and LoFS 12 surveys to the same regular grids.
To demonstrate the excellent survey repeatability, we show ex-

ample trace pairs in Figure 5. Both pairs are from the same common
receiver gather. Traces in Figure 5a are from the same near-offset
shot. Not only do the early arrivals fit each other well, but the coda
waves are also very similar. Traces in Figure 5b are from the same
far-offset shot. Despite having traveled for more than 10 km in off-
set, the early arrivals are still very close in phase and amplitude.

Inversion setup

In this study, the software we use is implemented in the time do-
main. As a result, CPU runtime is linearly depen-
dent on the number of sources simulated in each
iteration. Therefore, reciprocity is applied to use
receiver gathers as FWI input instead of shot
gathers.
A few assumptions are made in the process.

First, only the pressure data are used, and the
acoustic-wave equation is solved to simulate
the wavefield. The acoustic modeling would take
care of the P-wave traveltime and the amplitudes
of the near reflection angles. The P-wave AVO
effect caused by the S-wave velocities would
not be properly handled. However, it would
not be a significant issue because for the baseline
FWI, we mainly use the P-wave phase informa-
tion to build the model, and no class IIp type of
AVO (polarity change) is observed in the data.
For the time-lapse inversion, we do not expect
a strong rock matrix change within 28 months
when the field was under water flooding opera-
tion. The dominant effect is fluid saturation,
which would not be reflected by S-wave velocity
changes. Second, only the isotropic P-wave
velocity is used in the inversion. The density
model is derived from the Gardner et al.
(1974) equation with the updated velocity model
in each iteration. It is very difficult to separate the
density and VP effects on P-wave amplitudes
completely. As long as the amplitude information

is somewhat used, the inversion is effectively inverting for acoustic
impedances. Regarding time lapse, if a VP anomaly and a density
anomaly are present at the same time, it is very difficult to separate
them due to their similar scattering pattern within limited offsets.
Whether using the Gardener equation or doing a separate density
inversion, one would not be inverting for the real density rather than

Figure 4. Layout of the LoFS survey. The white points denote the
positions of shots used in the acquisitions in LoFS10 and LoFS12.
The blue dots denote the positions of every five receivers. The miss-
ing shot lines are those with low quality in either survey. The irregu-
lar holes in the shot map are the locations of the platforms.

a)

b)

Far offset

Near offset

Figure 5. Traces from LoFS 10 (white line) and LoFS 12 (yellow line) are plotted to-
gether to show their similarity. All traces are from the same receiver. The pair from a
near-offset shot is plotted in panel (a), and the pair from a far-offset shot is plotted in
panel (b). The strong phases like the diving waves and direct waves, and the coda waves
match well between surveys.
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using it as an amplitude absorber. Third, attenu-
ation is not included in the modeling. Instead, a
trace-by-trace energy scaling strategy is used to
mitigate amplitude differences (Liu et al., 2012).
The impact of the energy scaling on our 4D in-
version is very limited because the 4D signals are
generally weak and would not contribute much
to the trace energy.
The data frequencies we used range from 3 to

7 Hz. The maximum update in depth is approx-
imately 4 km. We extracted the source wavelet
from a raw near-offset trace. Because it is re-
corded on the seafloor, the first event is a mixture
of source side ghosts, direct waves, and water
bottom reflections. An effective wavelet is de-
rived after the removal of multiples and ghosts
and the application of a low-pass filter. Its quality
is confirmed by carefully comparing a synthetic
shot gather with the recorded data before FWI
(Liu et al., 2012). A free-surface boundary con-
dition is used to correctly model the free-surface-
related multiples and the ghost effect.

Initial velocity model

It is difficult in practice to use only FWI to
invert for a good quality model starting from a
poor initial guess. Several studies about FWI ap-
plications on Valhall use tomographic models as
initial models (Sirgue et al., 2009; Prieux et al.,
2011, 2013; Liu et al., 2013; Schiemenz and Igel,

2013). Because this study focuses on the time-lapse application, it is
not necessary to start from a very simple model. Liu et al. (2012)
present a Valhall velocity model using FWI combined with ray-
based tomography. The final model was quality controlled by
the data fit and the common image gather flatness especially for
the layers under the gas cloud. Here, we use a smoothed version
of that model as shown in Figure 6a, to avoid the elaborate process
of initial model building. The smoothing process removed most of
the structures in the model, but we left the kinematics accurate
enough to avoid cycle skipping. Details about how we handle
the initial model building and obtain the model in Figure 6a can
be found in Liu et al. (2012, 2013).

Baseline inversion result

We run acoustic FWI for the baseline survey data (LoFS 10) start-
ing from the model in Figure 6a. A frequency continuation strategy
is used to invert the data from 3 to 7 Hz by filtering the source wave-
let and the data with a low-pass filter. The source is not reestimated
at each iteration. All data are used at once without time windowing
and offset muting. After 200 iterations, the baseline inversion is
considered converged because the cost function has been signifi-
cantly reduced; the resulting model is shown in Figure 6b. The geo-
logic structures are recovered with high resolution. The image of the
gas cloud (marked by the black arrow in x-z slice in Figure 6b) is
much improved. The thin layer under the gas cloud (pointed by the
dashed black arrow) that is not visible in the starting model is re-
solved remarkably well. The differences between the field data and
the synthetics before and after the inversion are shown in Figure 7

Figure 6. (a) Initial model for baseline FWI obtained by smoothing the model built by
Liu et al. (2012) using a combination of FWI and tomography. (b) Baseline model ob-
tained after 200 iterations starting from panel (a). The shallow structures are improved
with higher resolution. The solid black arrow points to the gas cloud area. The low-
velocity layer (pointed by the dashed black arrow) beneath the gas cloud, that is not
visible in the starting model, is recovered.

a)

b)

Figure 7. Data residuals of one receiver gather (a) before the base-
line inversion and (b) after the baseline inversion are shown on the
same color scale to show the convergence of FWI. The traces are
ordered by the shot index. Residuals in far-offset diving waves
(marked by the dashed white circles) and near-offset reflected
waves (marked by the dashed black circles) are reduced signifi-
cantly.
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for one common receiver gather. The residuals of the long-offset
diving waves (white circle) and the near-offset reflections (black
circle) are greatly minimized by FWI.

Time-lapse inversion result

As in the synthetic examples, three schemes are applied to the
time-lapse data set (LoFS 12). For scheme I, we start from the
smooth model in Figure 6a and run the same number of iterations
to invert LoFS 12 data for the time-lapse model. We choose the
number of iterations as the stopping criteria because there is no ab-
solute convergence for the real data inversion, and we can only af-
ford a finite-compute time. Stopping at the same cost function value
does not make sense because the two inversions have different cost
functions (different data sets). The P-wave velocity model differ-
ence is shown in Figure 8a. In the shallow part, the differences

are relatively weak, whereas the differences in the deeper part
are stronger and spread out. The changes in the middle of the model
show limited conformity to the geologic structures in the baseline
model. For scheme II, the model in Figure 6b is used as the starting
model. Figure 8b shows the model difference. Compared with
scheme I, the magnitude of the difference is generally stronger.
In the shallow part (around the gas cloud) and in the deep part (be-
low the gas cloud), we find distinct velocity changes. However, the
strong amplitude does not seem to be very credible for 4D changes
within 2.5 years of production. The area of changes is also much
wider than normally observed. For scheme III (DDWI), starting
from the model in Figure 6b, we invert the data differences (LoFS
12 minus LoFS 10) for the velocity differences. As shown in Fig-
ure 8c, the velocity changes found by DDWI are much more local-
ized than the results from schemes I and II. More importantly, the
location of the changes is right at the reservoir level.

Figure 8. Three-dimensional view of time-lapse
P-wave velocity changes resolved by schemes
(a) I, (b) II, and (c) III (DDWI). The slices are
at the same coordinates as those in Figure 6.
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To better visualize and compare the results, we plot the 2D slices
in Figures 9 and 10. Depth slices at the location of the maximum
time-lapse velocity changes are shown in Figure 9. The three black
squares mark the holes in the survey (Figure 4). Although there are
some common features among the three images in Figure 9, the
velocity changes from schemes I and II cover a much bigger area
than the changes from DDWI. It is unusual to expect such broad 4D
changes throughout the model. The changes in scheme I exhibit
stronger amplitude to the left edge of the model, where no major
production activities took place. The distribution of changes in
scheme II is more consistent with the platform locations. However,
it is difficult to make an interpretation from such a widespread
model difference. In particular, the color scale in scheme II is
two times those in schemes I and III. If shown in the same color
scale, the changes in scheme II would be even broader. In contrast,
the result of scheme III is confined in a reasonable area, which is
also geologically meaningful.
In the cross-sectional views in Figure 10, the same velocity

change volume is shown in the x-z axis. The model changes have
completely different patterns. In schemes I and II, the velocity
changes spread horizontally over most of the area in the deeper part
of the model. Interestingly, the scheme I result shows weak changes
in the production zone, but strong values on the edges. It implies
that the two inversions diverged a little bit, and the model
differences mainly come from the effect of different local minimum.
Although the result of scheme II focuses more on the center part, the
reservoir layer and the bottom of the model exhibit strong

differences, which indicates that true time-lapse changes are mixed
with the background model updates. In addition, some strong
changes are also found in the shallow parts in schemes I and II.
In contrast, in the DDWI case, the dominant change is localized
in the center of the model beneath the gas cloud (dashed black
circle). The changes in other parts are much weaker, and no evident
changes are found in the shallow part of the model.

DISCUSSION

The synthetic examples and the Valhall data results exhibit sim-
ilar behaviors. The nonlinearity of the inversion makes scheme I
generate spurious model differences. For real data, noise is different
from shot to shot, and subsurface is not evenly illuminated by the
acquisition. The initial model is not equally accurate for all subsur-
face locations. Therefore, it is more difficult to control the conver-
gence for velocities at all positions in practice. For example,
because deeper reflections have lower signal-to-noise ratio and ac-
quisition, velocities at greater depths are less well-constrained and
so differ more between independent inversions, which explains why
the magnitude of changes increases with depth.
The model differences in scheme II are strongly contaminated by

the extra updates to the background model (i.e., model parts without
time-lapse changes) because we try to reduce the data residuals with
velocity perturbations that are not related to time-lapse changes.
The residuals left after the baseline inversion are much stronger than
the time-lapse signals for the real data case, which explains the sig-

Figure 9. The x-y slice at the depth where the maximum time-lapse changes occur. Time-lapse P-wave velocity changes resolved by schemes
(a) I, (b) II, and (c) III are compared. Note that the color scale in panel (b) is larger than those in panels (a) and (c) meaning stronger magnitudes.
The black squares show the locations of the platforms. Note the better focusing of time-lapse changes with scheme III. The unit of the colorbar
is m∕s.
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nificant model differences in Figure 10b. In addition, the deeper part
is less resolved than the shallow part in the baseline inversion. Con-
sequently, we observe more updates to the deeper part in the time-
lapse inversion in scheme II. One might argue that the situation
would be improved by running the same number of “extra” FWI
iterations on the baseline data (LoFS 10) as those run on the monitor
data, and then subtracting these two models. In other words, if we
run N iterations to get the baseline model, and another N to go from
baseline to monitor, then baseline should have another N iterations
to equally resolve unchanging structures. In fact, this reduces to
scheme I with a better starting model. We conducted this practice;
however, no remarkable improvements were achieved.
The DDWI gives localized results in the synthetic and real data

case studied here. Because only the velocity perturbations that can
explain the data differences are used to update the model, it is easy
to understand why the synthetic noise-free DDWI result in Figure 3c
is so clean. One might feel uncomfortable about subtracting real
data sets when there are so many uncertainties between surveys.
Nonrepeatability issues, such as random noise, source wavelet dis-
crepancy, source position error, and overburden changes, can gen-
erate significant data differences that may overwhelm the real time-
lapse signals. These nonrepeatability effects are discussed and
tested in detail in Yang et al. (2015), which concludes that DDWI
is robust to random noise, and mild nonrepeatabilities. For the LoFS
10 and LoFS 12 surveys, the standard deviation of the source posi-
tioning error is less than 5 m. Source wavelets are well-repeated in
the frequency range used in FWI, and any water velocity changes do
not have a huge impact because it is a shallow water environment.
Overburden changes are expected to be small because the two sur-

Figure 10. The x-z slice at the location where
maximum time-lapse changes occur along the
x-axis. Time-lapse P-wave velocity changes re-
solved by schemes (a) I, (b) II, and (c) III are com-
pared. (a) The scheme I result shows changes of
similar magnitude at shallow and deep locations.
(b) The scheme II result has fewer shallow
changes but contains strong and broad changes
in the deeper part. (c) The scheme III result shows
localized changes in the layer underneath the gas
cloud. The gas cloud region is marked with a
dashed black circle. The unit of the colorbar is
m∕s.

Figure 11. The decomposition of the monitor data set. The monitor
data can be separated into two branches by the modeling capability.
The parts that can be simulated by the modeling engine are consid-
ered as signal, whereas the rest is treated as noise. In the signal
branch, part of the baseline signal cannot be explained by the cur-
rent baseline model due to the imperfection of the baseline inver-
sion. This part (the black block) would generate artificial time-lapse
changes in schemes I and II, but will be canceled in DDWI. In the
noise branch, these nonrepeatable components will remain in all
schemes, but the repeatable components (the gray block) will be
canceled in DDWI.
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veys are only 28 months apart. All the issues are within the range
where DDWI is tested to be robust.
If we take the field data results at face value, DDWI is definitely

finding a time-lapse velocity change that is cleaner and easier to
interpret. But to understand why this is the case, and thus to increase
our confidence in our interpretation, we need to describe what we
are fitting in DDWI and how this contrasts with traditional FWI. To
this end, Figure 11 summarizes the various effects that we expect to
see in the time-lapse data, showing those that are suppressed with
DDWI as compared with standard FWI in black and gray. The data
can be decomposed into two parts as shown in Figure 11: signal and
noise. Within the signal branch, all the information is related to real
changes in earth properties. The signal can be simulated given the
true model. Due to either underfitting the data or being caught in a
local minima, the inverted model can only explain part of the signal.
The rest is residual signal (black in Figure 11) that we expect to
cancel in DDWI and not in schemes I and II. In the noise branch,
we classify noise as either coherent or random. The random com-
ponent will contribute relatively little to the final image because of
stacking. Coherent noise should lead to changes throughout the
model, if it is constructively interfering and significant enough.
Nonrepeatibilities can introduce coherent noise but are less likely
to be modeled in the simulation, which is why DDWI is robust to
them (Yang et al., 2015). For example, the weak variations in the
shallow part of our DDWI result are likely caused by the data
differences from nonrepeatibilities. These data differences are not
subsurface related, but will be projected into the model. However,
they could not be coherently explained by subsurface perturbations.
Therefore, the resulting model changes are relatively weak. The sig-
nal that is not modeled due to incomplete physics (gray in Figure 11)
in the model equations are considered as noise and has a second-
order effect on the velocity change. For example, the common back-
ground anisotropy and attenuation effects are subtracted out in
DDWI, and those induced by reservoir changes are relatively weak
and localized. Because the model change in the DDWI example is
clean and localized, it is credible that the recovered velocity change
is actually the reservoir change rather than simply the movement
into a different local minimum of the objective function, or simply
the change one might expect if the inversion were to be continued to
additional iterations.

CONCLUSION

Advanced acquisition technologies such as OBC provide the op-
portunity to use high-resolution imaging methods to monitor sub-
surface changes. We applied DDWI on two time-lapse data sets
from the Valhall field, and resolved cleaner and more interpretable
time-lapse velocity changes compared with those from independent
inversion schemes. The results are supported by previous studies
and the synthetic tests included in this work. The nonrepeatabilities
of the two surveys are mild and allow DDWI to invert for credible
time-lapse P-wave velocity changes.
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