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ABSTRACT

Time-lapse seismic data are widely used to monitor reservoir
changes. Qualitative comparisons between baseline and mon-
itor data sets or image volumes provide information about fluid
and pressure effects within the reservoir during production.
However, to perform real quantitative analysis of such reser-
voir changes, quantitative estimates of the elastic parameters
are required as input parameters to rock-physics-based reser-
voir models. Full-waveform inversion has been proposed as
a potential tool for retrieving subsurface properties, such as
P- and S-wave velocities and density by fitting simulated
waveforms to seismic data. An extension of this method to
time-lapse applications seems straightforward, but, in fact, it
requires more tailored processes such as double-difference
waveform inversion (DDWI). We used realistic 2D synthetic
pressure data examples to compare the performance of DDWI
with that of two other inversion schemes: one using the same
starting model for both inversions and the other starting the

monitor inversion with the final baseline inversion model. The
data simulation and inversion were based on acoustic theory.
Although P-wave velocity changes were reliably recovered by
each inversion method, DDWI was found to deliver the best
results when perfectly repeated surveys were used. However,
differencing the baseline and monitor data sets, as required by
DDWI, could be found to be sensitive to the presence of survey
nonrepeatability. To investigate the feasibility of using DDWI
in practice, the dependence of DDWI on the quality of the base-
line models and its robustness to survey nonrepeatability were
studied with numerical tests. Various types of nonrepeatability
were considered separately in the synthetic tests, including ran-
dom noise, acquisition geometry mismatch, source wavelet dis-
crepancy, and overburden velocity changes. A study of the
correlation between the levels and types of nonrepeatability and
the resulting contamination of the inversion results found that,
for pressure data, DDWI was capable of inverting reliably for
P-wave velocity changes under realistic survey nonrepeatability
conditions.

INTRODUCTION

Knowledge of the changes in reservoir properties resulting from
extracting hydrocarbons or injecting fluid is critical for optimizing
production. This information can be obtained using time-lapse seis-
mic monitoring technology because the seismic response is sensi-
tive to fluid and pressure effects in the reservoir. Quantitative

analysis of time-lapse data uses information, such as seismic am-
plitude maps or image/time shifts (Arts et al., 2004) to provide a
detailed description of reservoir changes based on relationships be-
tween the seismic response and changes in pore pressure and fluid
saturation (Landrø, 2001; Trani et al., 2011). However, many such
analyses are based on a linear approximation of the time-lapse seis-
mic response as a function of reservoir property changes, which
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would likely fail if the changes are large, or when nonlinear effects,
such as gas saturation changes, are present. Furthermore, map-
based methods cannot provide volumetric information, which could
better constrain the dynamic reservoir changes in space.
Full-waveform inversion (FWI) aims to estimate the subsurface

density and elastic parameters directly from seismic records through
a nonlinear data-fitting process (Tarantola, 1984; Virieux and Operto,
2009). Ideally, the extension of FWI to the time lapse is straightfor-
ward. Two FWI runs can be conducted for the baseline and monitor
data sets, and the difference of the two resulting models should reveal
the reservoir property changes. Nevertheless, nonlinear artifacts aris-
ing from the nonlinear nature of the inverse problem introduce
differences between the inverted models in addition to the real
time-lapse changes. To address this problem, Watanabe et al.
(2005) apply differential waveform tomography in the frequency do-
main to crosswell time-lapse data during gas production and show
that the results are more accurate for estimating velocity changes
in small regions than those obtained using conventional inversion
schemes. Onishi et al. (2009) apply a similar strategy to conduct dif-
ferential traveltime tomography using crosswell surveys. Zheng et al.
(2011) propose a double-difference waveform inversion (DDWI) al-
gorithm using time-lapse reflection data in the time domain and dem-
onstrate, with synthetic data, that the method has the potential to
produce reliable estimates of reservoir changes. Zheng et al.
(2011) compare DDWI with conventional approaches using synthetic
ocean-bottom-cable data. Synthetic marine time-lapse streamer data
were used for a similar performance comparison in Routh et al.
(2012). Asnaashari et al. (2011) conduct a sensitivity study on DDWI
results with respect to baseline models. Asnaashari et al. (2012) test
the performance of DDWI in the presence of random noise. Mahar-
ramov and Biondi (2014) compare DDWI with alternative methods in
the frequency domain, including a cross-updating scheme and simul-
taneous inversions with regularization. The cross-updating scheme
inverts the baseline and monitor data in alternate fashion, whereas
the simultaneous inversion scheme combines the two data sets in
one cost function without data differencing, and it uses a model regu-
larization term to penalize changes outside the reservoir. Raknes et al.
(2013) and Raknes and Arntsen (2014) apply DDWI to streamer data
that were acquired without time-lapse imaging in mind, and conclude

that the resulting low survey repeatability compromised the DDWI
images. A successful real-data application of DDWI is reported by
Yang et al. (2013), who use well-repeated ocean-bottom-cable data
sets. Given these previous results, it is clear that a comprehensive
feasibility study of DDWI under realistic acquisition conditions
would help our understanding of real-data applications. In particular,
it would be valuable to know in a quantitative sense how practical
survey conditions affect the performance and robustness of DDWI,
as well as what artifacts might occur in such cases.
In this work, we apply the DDWI methodology of Denli and

Huang (2009) to a synthetic data set and investigate the feasibility,
advantages, and limitations of DDWI when applied to realistic time-
lapse data acquisition scenarios. In the following sections, we first
describe the mathematics of DDWI and its implementation. We then
compare the performance of DDWI with that of two other inversion
schemes using (1) the same initial model for baseline and monitor
inversions and (2) the baseline inversion result as a starting model
for time-lapse monitor inversion, with both schemes using an acous-
tic model and noise-free pressure data. The dependence of DDWI
on the quality of the baseline model is discussed using several base-
line models of increasing accuracy and levels of convergence ob-
tained by applying more iterations of FWI. The success of 4D
seismic analysis also relies on the repeatability of the time-lapse
surveys. Coprocessed data, in which the nonreservoir-related
differences are minimized, give rise to much improved time-lapse
results (Rushmere et al., 2010; Campbell et al., 2011). In practice,
however, it is very difficult to correct perfectly for the lack of re-
peatability between surveys (Lumley, 2010). To investigate the ef-
fect of survey nonrepeatability on DDWI, several common
acquisition mismatches are discussed separately, including contami-
nation with random noise, survey source and receiver positioning
errors, source wavelet discrepancies, and seasonal water velocity
changes. For simplicity, all our numerical tests are conducted with
a 2D acoustic finite-difference model.

METHODOLOGY

Standard FWI can be expressed as a minimization problem with
the cost function

EstandardðmÞ ¼ 1

2
kuðmÞ − dk2; (1)

where u is the modeled synthetic waveform sampled at receiver po-
sitions, d is the acquired field data, and m is the model parameter
that is inverted for (see, e.g., Virieux and Operto [2009] for a review
of FWI). Many successful real-data applications have also been
published (Sears et al., 2010; Prieux et al., 2013; Warner et al.,
2013), which establish FWI as a tool for quantitative subsurface
property estimation.
To extend FWI to the time-lapse case, the most straightforward

strategy is to execute two inversions for the baseline and monitor
data sets, respectively. We call this strategy scheme I in this paper.
As shown in Figure 1, subtraction of the final models should give
the property changes between surveys. One could argue that it is
wasteful to start the time-lapse monitor inversion in scheme I from
an initial model that is independent of the baseline model, and that it
would be more reasonable to start from the final model of the base-
line inversion. We refer to such a strategy as scheme II. As shown in
Figure 2, the updated part of the model in the monitor inversion

Figure 1. Scheme I: Two independent FWI are conducted for the
baseline and monitor data sets, respectively. The model changes are
obtained by subtracting the inverted baseline model from the in-
verted monitor model.
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from scheme II should show the correct property changes, provided
that the baseline inversion has converged. scheme III, as shown in
Figure 3, is DDWI. In DDWI, the monitor inversion also starts from
the final baseline inversion model, but the cost function is changed
to

EDDWIðmÞ ¼ 1

2
kðumonitor − ubaselineÞ − ðdmonitor − dbaselineÞk2;

(2)

where ubaseline and umonitor are simulated waveforms from the base-
line inverted modelm0, and the monitor modelm, respectively, with
m being iteratively updated. The field data are dbaseline and dmonitor

from the baseline and monitor surveys, respectively. The name
“double difference” comes from the two differences in equation 2,
one between baseline and monitor field data sets and one between
modeled baseline and monitor data sets. As EðmÞ is minimized, the
property changes (m −m0) corresponding to the data differences
are recovered. In practice, before starting the time-lapse inversion,
we invert the baseline data set to derive the baseline model m0. Us-
ing m0, we then generate a synthetic data set ubaseline. To allow the
use of standard FWI algorithms, a synthesized monitor data set dsyn
is created by adding the data difference (dmonitor − dbaseline) to
ubaseline. The inverse problem is then reduced to a standard FWI with
cost function

EðδmÞ ¼ 1

2
kumonitorðm0 þ δmÞ − dsynk2; (3)

and can be solved by regular FWI solvers. The only extra step com-
pared with schemes I or II is the synthesis of dsyn, which requires a
trivial amount of computation in the overall process.

SCHEME COMPARISON WITH ACOUSTIC
INVERSION

Figure 4 shows the synthetic P-wave velocity and density models
used for the numerical study. The dominant geologic structure is the
anticline in the center, which lies underneath a sloping water bot-
tom. The layering of the model is very detailed to simulate a real-
istic sedimentary environment. The synthetic data are generated by
finite-difference modeling using 64 sources (250-m spacing) and
680 receivers (25-m spacing), all evenly spaced on the water sur-
face. This mimics an ocean-bottom-cable acquisition after applying
reciprocity. The synthetic model grid size is 6.25 m, and the time-
step size is 1 ms. We use absorbing boundaries on all sides of the
model; therefore, no surface-related multiples are modeled. A stan-
dard Ricker wavelet is used as the source time function, and its fre-
quency band is centered at 5 Hz. The low-frequency components
are included to enhance the recovery of the low-wavenumber part
of the model. An example shot gather from the simulated baseline
survey is shown in Figure 5. The direct arrivals are not filtered out;
however, they do not contribute to the FWI solution because we use
the correct water velocity in the initial model. A time-domain finite-
difference solver is used as the wave simulator. The inversion en-
gine is also time domain, and uses a nonlinear conjugate gradient
method to obtain the search directions. An L2-norm cost function is
adopted, and each inversion is stopped when the same number of
iterations is reached each time. The P-wave velocity and density are
inverted simultaneously.

For all listed schemes, we first apply FWI to the baseline data to
obtain the baseline velocity model. To make the test more realistic,
we assume very limited a priori information and use the linearly
increasing models shown in Figure 6 for the initial P-wave velocity
and density models. The inverted models from FWI are shown in
Figure 7. In the inverted velocity model, the anticline is well recov-
ered, and the layers are resolved with a resolution limited by the
frequency band of the data. The lower-right and lower-left parts
of the model are not as well recovered as the center part because
of the limited illumination of the survey. The inverted density model
also shows similar structures and appears to recover the true density
values successfully. However, the recovery is aided by the correla-
tion between the low-wavenumber components of the density and
velocity models used here. There is an inherent ambiguity between

Figure 2. Scheme II: The baseline model is found by FWI with the
baseline data set. The monitor inversion starts from the baseline in-
version result. The model updates are considered to be model
changes between baseline and monitor.

Figure 3. Scheme III: The monitor inversion starts from the base-
line inversion result, and inverts the data difference between the
baseline and monitor data sets. The model updates are considered
to be model changes between baseline and monitor.
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velocity and density inversions because of the similar radiation pat-
terns generated by the velocity and density point anomalies (Taran-
tola, 1986; Virieux and Operto, 2009; Prieux et al., 2013). As a
result, the detailed features of our inverted density model are not
accurately estimated, even though the gross features are correct.

For constructing the monitor models, we implanted realistic
changes in P-wave velocity and density that are typically observed
in practice into the baseline models, as shown in Figure 8. The
changes are not based on a real reservoir, but they are meant to re-
present a waterflood scenario with a variety of challenging velocity
and density changes. To test FWI’s capability of distinguishing such

Figure 5. Shot gather generated by a surface source in the middle of
the model.
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Figure 6. The starting (a) P-wave velocity and (b) density models
for baseline FWI. The models are obtained by horizontally averag-
ing the true models in Figure 4.
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Figure 7. The final baseline (a) P-wave velocity and (b) density
models after 60 FWI iterations. The cost function is reduced to less
than 5% of its original value.
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Figure 4. The true baseline (a) P-wave velocity and (b) density
models that are used for generating realistic synthetic data for
the baseline survey. The small dots at the bottom of the density
model are to benchmark inversion resolution and also to demon-
strate the ambiguity between P-wave velocity and density.
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parameter changes during the inversion, some of the density and
P-wave velocity changes have different signs in the three reservoirs.
P-wave velocity changes in the shallower reservoirs are smaller than
those in the deepest reservoir. By contrast, the relatively shallow
density changes are stronger than the deeper changes, and there
are no time-lapse density decreases.
The initial P-wave velocity and density models used in the base-

line and monitor inversions in scheme I are the same as those shown
in Figure 6. The inverted P-wave velocity and density changes from
the subtraction between the inverted monitor and baseline models
are shown in Figures 9b and 10b, respectively. Major features of the
P-wave velocity changes are recovered, including velocity increases
and decreases. However, amplitudes of the velocity changes are
only partially recovered (approximately 50%). This can be ex-
plained by the fact that a typical reservoir thickness for this realistic

model is 80 m, whereas half the seismic wavelength at the reservoir
depth is approximately 300 m, as is the theoretical resolution of
FWI. As a consequence, the peak velocity values are smoothed
out because of limited seismic resolution. In addition to the true
changes, other changes that follow the structures in the background
are visible, albeit weak in amplitude. The pattern of inverted density
changes is basically the same as that of the P-velocity changes.
However, the inversion adds some reductions in density, which
do not exist in the real density model. It is difficult to differentiate
density and P-velocity changes with pressure data because the two
parameters generate very similar radiation patterns, even over a
large range of scattering angles (Tarantola, 1986; Prieux et al.,
2013). P-wave velocity is better constrained by the P-wave kin-
ematic information in the data. Density is estimated from the am-
plitude information, which is also affected by P-wave velocity.
Hence, density changes are not accurately recovered.
In scheme II, we start the time-lapse inversion from the final

model that we obtained from the baseline inversion (Figure 7). Fig-
ures 9c and 10c show the inverted P-wave velocity and density mod-
els, respectively. It is obvious that the background structures,
including the seafloor properties, are updated together with the res-
ervoir changes. The resolved changes are also weaker in amplitude
compared with those from scheme I.
Scheme III (DDWI) results are shown in Figures 9d and 10d. The

results are cleaner than those of the other two schemes, and the am-
plitude is better recovered as well. However, the density ambiguity
is still not resolved. To invert for the density more accurately, a dif-
ferent model parametrization, such as velocity-impedance, would
be helpful, as discussed in Tarantola (1986) and Prieux et al.
(2013). We will not further address this issue here because it is
not directly associated with our analysis of different time-lapse in-
version schemes.
The major improvement in scheme III, as compared with

schemes I and II, is the removal of the coherent background struc-
tures (model residual) that are not related to the actual reservoir
changes. These structures correspond to the residuals in the baseline
inversion Rbaseline ¼ ubaseline − dbaseline. Because there is no perfect
inversion, Rbaseline is never exactly zero. For scheme I, the nonli-
nearity of the inverse problem leads to different levels of conver-
gence for baseline and monitor inversions at different locations
in the model, where Rbaseline ≠ Rmonitor. Accordingly, the subtrac-
tion between models gives nonzero contributions over the entire
model. For scheme II, Rbaseline gets injected into the model together
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(b) density are confined to three reservoirs.
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ity changes recovered by inversion schemes I, II, and III, respec-
tively.
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with the real time-lapse signals due to reservoir changes, and it gen-
erates model perturbations in regions, where there are no time-lapse
changes. As a result, the monitor inversion is trying to further re-
cover the background model, as well as finding the reservoir
changes. In scheme III, the common data residuals are subtracted
out in the cost function in equation 2. This can be shown by taking
the first derivative of equation 2 with respect to umonitor

∂EðmÞ
∂umonitor

¼ ðumonitor − dmonitorÞ − ðubaseline − dbaselineÞ

¼ Rmonitor − Rbaseline: (4)

From this, we see that when ∂EðmÞ
∂umonitor

¼ 0, the cost function EðmÞ
reaches its minimum, where the baseline and monitor data residuals
are equal. As a result, the inverted changes are free of background
structures because the residuals cancel out perfectly, at least in
theory. Similar discussions can be found in Asnaashari et al. (2015).
It is arguable that in scheme II, subtraction of the two models

does not provide a fair comparison because the monitor inversion
has updated the model for more iterations than the baseline. A more
promising approach would be to start from the baseline result and
update the baseline and monitor model for the same number of iter-
ations, which, in fact, is equivalent to scheme I with a better starting
model. In practice, however, it is difficult to know in advance what
starting model is required to achieve a particular level of inversion
accuracy. It is clear that the issues with scheme I described above
can never be fully eliminated, but they can be mitigated with in-
creasingly better starting models. Similar but more advanced ideas
are presented by Maharramov and Biondi (2014) and Yang et al.
(2014), both of whom use cross-updating strategies to improve
the baseline model and resolve the time-lapse changes at the same
time. We do not include such methods within the scope of
this study.

BASELINE MODEL DEPENDENCE

With the acoustic synthetic example with perfectly repeated sur-
veys, we observed that DDWI delivers cleaner and better inversion
results, at least for the time-lapse P-wave velocity changes. In this
section, we investigate how the quality of the baseline models af-
fects the performance of DDWI because the inverted baseline model
is a prerequisite for DDWI. We know that DDWI does not resolve

the ambiguity between velocity and density, so we do not present
any density results for this test and for all subsequent tests with non-
repeatability issues.
Because the baseline model is not further updated in DDWI, the

dependence of DDWI on the baseline model accuracy must be in-
vestigated to help to decide if the baseline model is reliable enough
in practice. As shown in Figure 11, we selected six baseline models
corresponding to different convergence levels along the cost func-
tion curve for the FWI of the baseline data. With more iterations, the
model improves as the predicted data get closer to the recorded data.
For each of the baseline models, we generate a synthetic data set
dsyn (equation 3), and run DDWI to invert for the P-wave velocity
changes. Figure 12 shows the resulting inverted baseline models.
For each of these DDWI applications, the program was stopped
when the same number of iterations was reached. The correspond-
ing velocity changes resolved by DDWI starting from each one of
the baseline models are shown in Figure 13. Note the different color
scale for each subfigure.
It is clear that DDWI gives an improved result with a better base-

line model. In Figure 12b, the baseline model has the correct water
depth, but is far from the true velocity model. In this case, DDWI
fails to invert for the changes correctly, as shown in Figure 13b.
Some of the changes have the wrong sign, and the overall recovery
in amplitude is poor (by �15 m∕s or more). This is because the
baseline model controls the kinematics when the data differences
are back-projected. With a poor baseline model, DDWI will project
the data differences into the wrong locations, where the signals can-
not be correctly stacked. With a better background velocity model,
such as those in Figure 12c and 12d, DDWI is able to invert for the
velocity changes with the correct sign (Figure 13c and 13d),
although the side lobes remain. From Figure 13e–13f, the amplitude
recovery improves as the baseline model contains more and more
details that better match the reflections and scattering when the data
differences are back-propagated.
From these observations, we see that the performance of DDWI

certainly depends on the quality of the baseline velocity model.
With a good background model such as a smooth migration velocity
model without the details, we expect DDWI to be able to invert for

Figure 11. The cost function curve of the baseline inversion. Dots
indicate the selected number of iterations: 1, 5, 10, 20, 50, and 99.

x (km)

x (km) x (km)

x (km)

x (km) x (km)

z 
(k

m
) 

z 
(k

m
) 

z 
(k

m
) 

z 
(k

m
) 

z 
(k

m
) 

z 
(k

m
) 

True P-velocity model

 

 (km/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 1.5

2.5

3.5

4.5

Iteration 1

 

 Velocity (km/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 1.5

2.5

3.5

4.5

Iteration 5

 

 Velocity (km/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 1.5

2.5

3.5

4.5

Iteration 10

 

 Velocity (km/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 1.5

2.5

3.5

4.5

Iteration 20

 

 Velocity (km/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 1.5

2.5

3.5

4.5

Iteration 99

 

 Velocity (km/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 1.5

2.5

3.5

4.5

a)

b)

c)

d)

e)

f)

Figure 12. (a) The true baseline P-wave velocity model; (b-f) the
baseline P-wave velocity models after 1, 5, 10, 20, and 99 iterations.
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at least the approximate locations of the velocity changes. Including
more details in the baseline model improves the recovery of the
amplitude changes. In practice, when we need to make a judgment
on the accuracy of the baseline model is, seismic measures (e.g.,
gather flatness and data fitting) and prior information (well logs
and interpretations) should be used as constraints (Hu et al.,
2009; Asnaashari et al., 2013). Within a wide range of convergence
levels for baseline inversion (Figure 11), DDWI is robust and
capable of delivering reliable results.

SURVEY NONREPEATABILITY

Survey repeatability is a common issue in time-lapse seismic
analysis. The successful acquisition of individual surveys does
not guarantee quality time-lapse signals. Small deviations between
acquisitions can cause significant signal differences between
data sets. Because the seismic time-lapse response to reservoir
changes is relatively subtle, the true time-lapse signals are easily
overwhelmed by data differences caused by survey nonrepeatabil-
ity. When baseline and monitor surveys are slightly different,
schemes I and II will continue to have the same drawbacks as
we discussed with perfectly repeated surveys. However, these
schemes would not be strongly affected by nonrepeatability because
the monitor and baseline data sets are used independently, and
subtraction is performed only in the model domain. In contrast,
DDWI requires data differencing, which appears to be sensitive
to small deviations between surveys. Given the fact that survey dis-
crepancies are inevitable in reality, it is worthwhile to investigate
whether DDWI is robust enough to handle realistic nonrepeatability
issues before being applied to real data. In this section, we discuss
the major causes of nonrepeatable noise, including random
noise, source and receiver positioning errors, and source wavelet
discrepancies and overburden velocity changes (modeled as static
shifts) and their impacts on the performance of DDWI. The

objective here is not to prove that DDWI is better than the other
methods, but to demonstrate what to expect with DDWI in different
scenarios.

Random noise

Although the sources of random noise vary within and across
surveys, they can be effectively characterized by a random distri-
bution of power spectrum and phase. In our study, we investigate
the impact of random noise on the baseline inversion and DDWI, so
we use a noise model with a uniformly distributed power spectrum
and random phase in the frequency-wavenumber domain, and then
transform these quantities into the time-offset domain to generate
the noise for each shot gather. Therefore, the noise does not change
abruptly from trace to trace, but it exhibits a certain spatial corre-
lation. Such an approach also more strongly influences portions of
the spectrum in which signals are weak, such as the low-frequency
signals that are known to be crucial for obtaining reliable velocities
from FWI (Virieux and Operto, 2009). This is illustrated in Fig-
ure 14, which shows the power spectra of the combined signal plus
noise for the six noise levels we investigated. The same type of
noise is added to baseline and monitor data sets. The black dotted
curve shows the power spectrum of the clean trace. The colored
curves from red to black show the spectra of the noisy traces with
different levels of noise contamination. To quantify the noise level,
we use the overall energy ratio between the noisy and clean signals
of one entire shot gather:

r ¼ Σl
i¼1ni

2

Σl
i¼1si

2
� 100%; (5)

where ni2 is the noise energy of the ith trace, si2 is the signal energy
of the ith trace, and l is the number of traces in a gather. Figure 15a
shows a sample trace, and in Figure 15b, the data difference be-
tween the noisy monitor and baseline surveys for the same trace
is plotted together with the clean data difference trace. Due to
the weak reservoir response, the ratio between the noise and the
real time-lapse signal is extremely large, even for only 1% noise
energy.
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Figure 14. Normalized power spectra of a sample trace with differ-
ent noise contamination levels. The random noise spectrum obeys a
uniform distribution from 0 to 15 Hz. Six noise levels are tested.
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Figure 13. P-wave velocity changes obtained with incorrect base-
line velocity models. (a) The true time-lapse changes in P-wave
velocity, with the color scale clipped at �50 m∕s and (b-f) the re-
covered time-lapse P-wave velocity changes by DDWI starting
from the baseline models shown in Figure 12b–12f, respectively.
Recovery of the velocity changes is clearly improved with better
starting baseline models. Note that panel (a) is identical to Fig-
ure 10a.
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Figure 16a–16f shows the baseline FWI P-wave velocity results
for each noise level shown in Figure 14. All the inversion results
capture the dominant structural features, as well as the fine strati-
graphic layers, but they are contaminated by random noise in pro-
portion to the noise level. Although the noise and the primary waves
have the same energy level in Figure 16f, FWI still gives a reason-
able result due to the strong stacking power of the coherent signals.
Figure 17a–17d shows the DDWI results starting from the corre-
sponding baseline FWI results in Figure 16a–16d for each noise
level. Only four cases are included because at more than 64% noise
energy, the reservoir changes cannot be identified from the image.
Below this noise level, DDWI is able to deliver reasonable results,
in which reservoir changes are clearly distinguishable even with rel-
atively high noise levels.
We attribute the success of baseline FWI and DDWI in the pres-

ence of noise to the coherency in seismic data and their constructive
interference during wave propagation through a good velocity
model. In FWI, as the data are injected into the model, most of
the random noise cancels during propagation, whereas the real sig-
nals constructively interfere and produce coherent model updates.
This also explains the spotty pattern of the noisy structures in the
results in Figures 16 and 17. The random noise we use here is not
completely random in space (across traces) because it is generated
with a spatial correlation, as is often observed in reality (e.g., the
scattering generated by subwavelength inhomogeneities in the sub-
surface, and acoustic noise from the ocean). Such signals are noise,
not signal, and have random properties, but they are not completely
random at any scale. Their spatial correlation leads to coherent
stacking in the model space to some extent, which will contaminate
the final results. In the cases we tested, DDWI is very robust to
random noise even when the real signal is not directly observable
from the data difference, which can be attributed to the fact that
most of the noise energy cancels out due to randomness. The rem-
nant coherent stacking in space generates more noise in the model
as the signal-to-noise ratio severely decreases.

Source and receiver positioning error

If the baseline and monitor surveys use the same acquisition
geometry, it is straightforward to apply DDWI because the two data
vintages can be differenced trace by trace. However, even with ad-
vanced GPS guidance during acquisition, the positioning of sources
and receivers still contains errors. Here, we have to clarify the differ-
ence between inaccurate positioning and nonrepeated positioning.
If sources and receivers are placed at different locations between
surveys, but the positions are well measured, we can interpolate two
surveys to the same grids given enough sampling. However, the po-
sitions are not always accurately measured, and interpolation cannot
correct this type of error. A small positioning error is expected in a
well-repeated monitor survey (Beasley et al., 1997; Yang et al.,
2013). Nonetheless, small positioning deviations can generate huge
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Figure 15. (a) A near-offset monitor trace with 1% noise energy.
The amplitude of the noise is about the same level as that of the
coda waves. (b) Difference between the noise-free monitor and
baseline traces (red) and between the noisy monitor and baseline
traces (blue). Note that small waveform changes shown in the
red trace between approximately 3 and 5 s are obscured by noise
in the blue trace.
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Figure 16. Baseline models obtained by FWI on noisy data. (a-
f) The baseline P-wave velocity models recovered by FWI starting
from the same layered model shown in Figure 6a and using progres-
sively higher noise levels from 1% to 1024%, respectively, as de-
picted in Figure 14. As the noise energy increases, details in the
model are more contaminated, but recovery of the dominant struc-
ture is very robust to random noise.

x (km)

z 
(k

m
) 

P-velocity change: 1% noise

 

 (m/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 −50

0

50

x (km)

z 
(k

m
) 

P-velocity change: 4% noise

 

 (m/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 −50

0

50

x (km)

z 
(k

m
) 

P-velocity change: 16% noise

 

 (m/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 −50

0

50

x (km)

z(
km

) 

P-velocity change: 64% noise

 

 (m/s)

2 4 6 8 10 12 14 16

0
1
2
3
4
5
6 −50

0

50

a)

b)

c)

d)

Figure 17. P-wave velocity changes obtained with noisy data. (a-
d) The recovered time-lapse P-wave velocity changes obtained from
DDWI starting from the baseline models shown in Figure 16a–16d,
respectively. Note that in panel (d), it is difficult to identify reservoir
changes reliably at a noise energy level of 64%.
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data differences over the entire data set; these differences are nor-
mally stronger in amplitude than the real 4D signals. In this section,
we focus on the impact of this type of error on the performance of
DDWI. We assume the baseline survey positioning is known, and
use a perturbed survey geometry to generate monitor data. The re-
sulting data differences are input directly into DDWI without cor-
recting for these positioning errors. Due to the inherent limitations
of our simplified finite-difference modeling, we are only able to
perturb the source and receiver positions by an integral number of
grid points (e.g., for a grid spacing of 6.25 m). Two types of per-
turbations are studied: random perturbations and systematic pertur-
bations. Both types are applied to sources and receivers either
simultaneously or individually.
For random source and receiver perturbations, we generate a ran-

dom sequence of numbers with zero mean that determines if the
source or receiver position is perturbed by one grid point to the right
or to the left. Figure 18 shows the P-wave velocity changes resolved
by DDWI with random perturbations in source positions only,
receiver positions only, and combined source and receiver positions
for the monitor survey. Despite mild contamination in the back-
ground and at the seafloor, the reservoir changes are recovered with
an acceptable quality when compared with the clean-data case in
Figure 9d. The receiver-only perturbation case (Figure 18c) appears
cleaner than that of the source-only perturbation (Figure 18b) be-
cause the number of receivers (680) is more than 10 times the num-
ber of sources (64); hence, artifacts induced by positioning errors
are better canceled out in Figure 18c. Although not attempted here,
we expect that including more shots will improve the image in Fig-
ure 18b. In Figure 18d, where sources and receivers are perturbed,
the artifacts from DDWI show the combined effects of those in Fig-
ure 18b and 18c.
For systematic source perturbations, we divide the 64 sources

into groups, and perturb each group by the same shift. Figure 19
shows the DDWI results with source positions perturbed in groups,
with the 64 evenly spaced sources numbered sequentially from left
to right along the top of the model. In Figure 19b, all sources in the
monitor survey are shifted one grid point to the right. The recovered
velocity changes are slightly weaker in amplitude than those in Fig-
ure 18b, but the image is relatively clean. In Figure 19c, sources 1–

32 are perturbed one grid point to the right, and sources 33–64 are
perturbed one grid point to the left. In Figure 19d, sources 1–16 and
sources 33–48 are shifted one grid point to the right, and sources
17–32 and 49–64 are shifted one grid point to the left. Similar
velocity changes are recovered for the last two cases (Figure 19c
and Figure 19d), and background artifacts follow the true structures,
although they are weaker in amplitude compared with the resolved
reservoir changes. The pattern of these artifacts reflects the number
of source groups that were perturbed. In particular, the amplitude
polarity flip of the artifacts at the seafloor is directly correlated with
the position of the shifted sources. As in the random perturbation
case, the results for systematically perturbing the receivers are sim-
ilar to those for source perturbations, although the artifacts are
smaller due to more effective stacking.
In practice, source and receiver position errors due to limited GPS

accuracy (approximately 1 m) and streamer feathering effects can be
larger than what we have tested here (�6.25 m). However, the mis-
match between postprocessed baseline and monitor surveys can be
reduced to a much lower level by data binning, interpolation, and
regularization (Lumley, 2001; Rushmere et al., 2010). In highly
repeatable acquisitions, such as ocean-bottom-cable systems, the
source positioning mismatch in the raw data can be even smaller
than 6.25 m (Beasley et al., 1997; Yang et al., 2013). In practice,
errors are likely to arise from a combined effect of systematic and
random perturbations. From all the tests above, it is expected that
DDWI will be able to deliver good results with mild source and
receiver positioning discrepancies. To some extent, the randomness
of this error helps to mitigate the artificial patterns seen in the in-
version results.

Source wavelet discrepancy

Source wavelets are likely to be different between surveys in real
acquisitions. The acquisition conditions (e.g., air-gun types) and in-
itial data processing can introduce discrepancies in source wavelets.
These errors are commonly minimized by coprocessing the baseline
and monitor data sets. The source wavelet can be shaped by apply-
ing matched filtering in the cross-equalization process (Lumley,
2001). However, after all such optimization steps are applied, the
resulting wavelets are still likely to have small discrepancies (e.g., a
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Figure 18. P-wave velocity changes obtained using monitor data
with random source and receiver positioning errors. (a) The true
time-lapse changes in P-wave velocity, with color scale clipped
at�50 m∕s; P-wave velocity changes resolved by DDWI are shown
for randomly perturbed (b) source, (c) receiver, and (d) combined
source and receiver positions in the monitor survey. Note that
panel (a) is identical to Figure 9a.
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Figure 19. Effects of systematic shifts in source positions. (a) The
true time-lapse changes in P-wave velocity, with the color scale
clipped at �50 m∕s. (b-d) P-wave velocity changes resolved by
DDWI with the source positions systematically perturbed in the
monitor survey in divisions of 1, 2, and 4 groups, respectively. Each
group of sources is shifted one grid position (6.25 m) in the same
direction either to the right or the left, as shown by the black arrows.
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few degrees of phase rotation). In this section, we focus on the im-
pact of phase differences between baseline and monitor source
wavelets on the performance of DDWI.
We use a standard zero-phase Ricker wavelet for the baseline sur-

vey, and phase-rotated Ricker wavelets for the monitor surveys. Fig-
ure 20 shows how the wavelet is distorted gradually with more and
more phase rotation. It is apparent that a small discrepancy between
source wavelets will cause significant data differences across the
entire survey. To simulate the situation, in which we cannot further
shape the wavelets by further processing, we obtain the field data
difference dbaseline − dmonitor by directly subtracting the baseline and
monitor data sets containing the residual phase differences. Syn-
thetic data sets ubaseline and umonitor are simulated with the same stan-
dard zero-phase Ricker wavelet.
Figure 21 shows all the DDWI results with increasing levels of

phase rotation in the monitor source wavelet. The inverted P-wave
velocity changes are as accurate as those of previous inversions for
all the cases tested in terms of location, shape, and amplitude. How-
ever, the trend that larger phase rotations give rise to stronger ar-
tifacts in the model is also clearly observed. Up to 10°, reservoir
changes can be easily distinguished from the incorrectly determined
background structures. With larger phase rotations, however, source
wavelets in the monitor survey are markedly shifted from the base-
line wavelet, and the corresponding data differences are large
enough to produce significant model changes that overwhelm the
real changes. In practice, a phase difference of less than 10° is gen-
erally achievable, in which case DDWI appears to be robust.
It is important to point out that all the inversions in this section

are masked (i.e., no water layer was involved). Even for a small
phase rotation (e.g., 2°), DDWI cannot converge when the entire
model is included in the inversion. This is because the dominant
signal, i.e., the major contributor in the L2-norm cost function
of equation 2, is the direct arrival. A trivial phase rotation in the
source wavelet will generate huge data differences, especially for
the dominant phases (e.g., direct waves and water bottom reflec-
tions). These data differences are nonphysical, and they cannot
be explained by the wave equation without attenuation. For exam-
ple, a delayed direct arrival indicates a decrease in water velocity
between the source and receiver; however, the phase-rotation-

induced delay is frequency-dependent, which means that only a dis-
persive velocity can explain the traveltime delay. In addition, the
data differences are not random enough to cancel each other. As
a result, DDWI is not able to find a perturbation in the shallow part
of the model (i.e., the water layer) that makes the cost function de-
crease. When the model is masked, these data differences are not
activated in the cost function, allowing DDWI to focus on the res-
ervoir responses. This situation is very similar to the target-oriented
inversions presented in Zhang and Huang (2013) and Asnaashari
et al. (2015).

Overburden velocity changes

In terms of the effect of model changes on FWI, areas outside the
reservoir may be even more important than those inside. In particu-
lar, overburden structures may change between surveys. For exam-
ple, compaction within the reservoir can change the stress field and
velocity above and below it (Smith and Tsvankin, 2013). Water
velocity also varies seasonally. All such overburden changes will
affect the entire data set and cause data differences unrelated to res-
ervoir changes. In this section, we use water velocity changes to
represent this type of survey nonrepeatability.
For the synthetic model in this study, the water depth can reach

2000 m. Deepwater production areas like the Gulf of Mexico have
water depths of up to 3000 m (Managi et al., 2005). In such water
depths, seismic amplitudes and traveltimes can be perturbed sig-
nificantly even with small variations in water velocity. Factors that
influence water velocity include temperature, salinity, and depth.
We adopt Medwin’s (1975) equation to describe their relationship:

v ¼ 1499:2þ 4.6T − 0.055T2 þ 0.00029T3 þ 1.34

− 0.01TðS − 35Þ þ 0.016D; (6)

Figure 20. The source wavelet with different levels of phase rota-
tion. The blue curve shows the standard Ricker wavelet, which is
used as the baseline survey source wavelet. The phases are rotated
by the same number of degrees over all frequencies for each monitor
wavelet. The five levels of phase rotation are used: 2°, 5°, 10°, 20°,
and 30°.
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Figure 21. Effects of source wavelet discrepancies between base-
line and monitor surveys. (a) The true time-lapse changes in P-wave
velocity, with the color scale clipped at �50 m∕s. P-wave velocity
changes resolved by DDWI are shown in the remaining plots with
the source wavelet in the monitor survey shifted in phase by (b) 2°,
(c) 5°, (d) 10°, (e) 20°, and (f) 30°, for all frequencies. Note that
panel (a) is identical to Figure 10a.
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where T is the temperature (°C), S is the salinity (in parts per thou-
sand, or ppt), D is the water depth (in meter), and v is the velocity
(in m∕s). For our purpose, it is not necessary to discuss these fac-
tors separately. We assume that salinity (S ¼ 35 ppt) and sea level
stay constant, while temperature changes. Typically, water temper-
ature in the Gulf of Mexico varies at the surface from 30°C in the
summer to 15°C in winter, and decreases to 4°C below 1000 m.
Water velocity can change by up to 40 m∕s at the surface season-
ally according to equation 6. From the water surface down to
1000 m, we assume a linear temperature gradient, and compute
the water velocity with equation 6. Water velocity is assumed con-
stant (¼ 1500 m∕s) less than 1000 m, and acquisition of the base-
line survey is assumed to be in winter (with a surface temperature
15°C).
We use 18°C and 30°C for surface water temperatures of two

monitor surveys acquired in the spring and the summer, respec-
tively. According to equation 6, the maximum water velocity
changes are approximately 9 m∕s and 39 m∕s, respectively, at the
surface. For both cases, we directly difference the monitor and base-
line data sets to generate dsyn, assuming that no corrections have
been made in data processing to account for the water velocity
changes. The DDWI results are shown in Figure 22. The reservoir
changes are well recovered together with the water velocity
changes. As expected, larger water velocity changes generate
stronger background noise (Figure 22b) than that for smaller veloc-
ity changes (Figure 22a).
In fact, background noise will exist even if the exact water layer

velocity model is used in DDWI. We can write the data difference as

δd ¼ dmonitor − dbaseline

¼ GðmÞδmwater þGðmÞδmreservoir þ : : : ; (7)

whereGðmÞ is the sensitivity matrix of the wavefield with respect to
a model perturbation at the vicinity of the true modelm; δmwater and
δmreservoir are model perturbations in the water layer and reservoir,

respectively. Neglecting higher order terms, the major contributor to
the data differences is first-order scattering caused by water velocity
and reservoir changes. If we managed to obtain the exact water
velocity and reservoir changes, the cost function residual would be

ðumonitor − ubaselineÞ − ðdmonitor − dbaselineÞ
¼ ðGðm0Þ −GðmÞÞδmwater

þ ðGðm0Þ −GðmÞÞδmreservoir þ : : : ; (8)

whereGðm0Þ is the sensitivity matrix based on the inverted baseline
model m0. Because we cannot obtain the exact baseline velocity
model m, the data residual does not go to zero even with correct
water velocities and reservoir properties. Instead, the data difference
in the cost function tries to use perturbations in addition to the cor-
rect time-lapse changes to minimize the misfit, generating spurious
model updates outside the reservoir that are not from time-lapse
effects. From equation 8, we would expect this type of background
noise in DDWI even without water velocity changes. However,
if the baseline inversion is successful, Gðm0Þ −GðmÞ should be
much weaker than GðmÞ because Gðm0Þ approximates GðmÞ
after the inversion. As a consequence, the second-order scattering
caused by the reservoir changes and imperfect baseline model
(ðGðm0Þ −GðmÞÞδmreservoir), is significantly weaker than that
caused by the water velocity changes ðGðm0Þ −GðmÞÞδmwater),
and the first-order scattering from the reservoir (GðmÞδmreservoir).
Therefore, the second-order reservoir scattering is not strong
enough to contaminate the result. One example of this weak sec-
ond-order scattering is the case without water velocity changes
as presented in Figure 9d. After all, this type of artifact is due to
the incorrect back-propagation of data differences in the inaccurate
baseline model. The level of the model inaccuracy determines the
level of artifacts.
Although the results of the two cases presented here are of good

quality and interpretable, DDWI is not able to overcome water
velocity differences by itself because, once the data difference is
taken, the inversion does not differentiate between the sources of
these signal changes. DDWI could be improved if we processed
the time-lapse data set carefully with a calibrated water velocity be-
fore taking the data difference. After this, DDWI would function as
if there were no water velocity changes.

DISCUSSION

As we observed from the mathematical derivations and the syn-
thetic tests, the advantage of DDWI over the other two time-lapse
inversion schemes discussed here is that the common data residuals
are subtracted out and do not generate background velocity updates
that are unrelated to reservoir changes. It is important for inter-
preters to make decisions based on clean and meaningful images,
in which the reservoir information is not contaminated by back-
ground noise. However, in practice, data subtraction is intuitively
dangerous whenever at least some of the differences between data
sets do not originate from the reservoir response. When these non-
reservoir signals are included in the cost function, it is reasonable to
expect that DDWI will produce artifacts in the inverted images by
attempting to fit such data. What we observe, however, from our
synthetic study does not obey this intuition. Neither strong random
noise nor mild survey nonrepeatability severely harms the perfor-
mance of DDWI. It is worth clarifying that the mechanism of this
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Figure 22. P-wave velocity changes resolved by DDWI with the
water velocity in the monitor survey increased by a maximum of
(a) 9 m∕s and (b) 39 m∕s at the surface.
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robustness is not only due to DDWI, but also to the merits of FWI
itself. Unlike linear imaging methods (e.g., reverse time migration),
FWI or DDWI does not directly map all of the data into the model
domain. Instead, these methods look for a model perturbation that
can explain the data via the wave equation. It is not difficult to
understand that random noise has little effect on DDWI because
most of the noise energy is stacked out during back-propagation.
Data differences caused by survey nonrepeatability are strong and
coherent, and, therefore, are not fully stacked out during back-
propagation. However, these differences do not produce strong
velocity updates because they cannot easily be generated by wave-
equation-based velocity perturbations. Although reservoir changes
are generally well resolved by DDWI, data differences arising from
nonrepeatability effects have relatively small contributions to the
final results. Obviously, when the nonrepeatability becomes severe,
some of the data differences will lead to spurious model perturba-
tions. The major information we would like to deliver therefore, to
achieve a successful time-lapse waveform inversion, baseline and
monitor data sets still need to be carefully coprocessed to mitigate
nonrepeatability effects before applying DDWI. If any combination
of noise effects we have tested in this study applies to the same data
set, the aggregated effect will deteriorate the performance of DDWI.
Our use of the term realistic in this study is not intended to ad-

dress acquisition design, but rather focuses on the nonrepeatability
of time-lapse surveys. Although we believe that our 2D examples
are sufficient for testing the performance of DDWI, their acquis-
ition geometries differ significantly from those commonly used in
practice. For example, 3D time-lapse ocean-bottom-cable (OBC)/
ocean-bottom-node (OBN) acquisitions suffer only from the loca-
tion errors of shots, which are often dense enough for interpola-
tion. The 3D time-lapse streamer data tend to have more serious
issues with nonrepeatability because sources and receivers can
have errors in their inline and crossline directions. In addition,
time-lapse streamer data can have different offset ranges, which
would limit the capability of FWI. However, as long as the same
offset range is used for baseline and monitor inversions, DDWI
can still adequately resolve the time-lapse changes.
We limited our study to acoustic data and P-wave velocity inver-

sion because our goal is to demonstrate the effect of survey non-
repeatability. The real earth is elastic, not acoustic, and often
anisotropic and attenuating. In an acoustic earth with local P-veloc-
ity or density changes, acoustic DDWI would be effective in iden-
tifying fluid property changes that give rise to the changes in
seismic properties. When additional physics is added, more sophis-
ticated inversion methodologies would be needed, depending on
how strong the time-lapse effects are. S-velocity and anisotropy
might change when reservoir compaction occurs, and attenuation
might change over time in a producing gas field. Such changes
would be reflected as data differences in DDWI; if the inversion
engine is acoustic, false changes in P-velocity would likely be cre-
ated to explain these data differences. The DDWI framework, how-
ever, is not limited to acoustic models, and it is straightforward to
include more physics in the inversion if needed. The same principle
also applies to schemes I and II. The fundamental conclusions from
our tests should still hold for more advanced physics.
In this work, we have not included any tests of nonrepeatability

for schemes I and II. However, it is not difficult to gain insight into
such tests based on our understanding of scheme III results. Because
baseline and monitor data sets are used separately for schemes I and

II, they will suffer from contaminated data in the sameway as would
the inversion of a single vintage of data. Contaminated data would
lead to parameter estimation errors in baseline and monitor models,
which would introduce spurious model differences. Such differ-
ences, however, would be better constrained than those from
DDWI. One obvious example would be for sources that are shifted
significantly between surveys (e.g., several hundred meters), in
which case DDWI will likely fail because the cost function in equa-
tion 2 becomes inappropriate. Schemes I and II might still work
properly in this case because both vintages cover identical areas,
and subtraction only happens between final models after inversion
takes place (although the previously discussed issue of background
model errors still exists). The advantages of DDWI certainly dimin-
ish as the level of nonrepeatable noise increases, although the deg-
radation is gradual. In practice, it is safer to try all three schemes and
compare them side-by-side if the level of survey nonrepeatability is
uncertain. The results presented here can be used as a reference to
help to identify artifacts and choose the method that yields the most
reliable result.
What we mean by “realistic” in this study is not about the total

acquisition, but we only focused on the nonrepeatability of time-
lapse surveys. Although we think our 2D examples are sufficient
for the purpose of testing the performance of DDWI, it is quite
far away from a commonly used acquisition in practice. The 3D
OBC/OBN acquisitions would only have location errors with shots,
which are often dense enough for interpolation. The 3D streamer
data tend to have more issues because source and receiver might
have errors in inline and crossline directions. In addition, time-lapse
streamer data could have different offset ranges that would limit the
capability of FWI. However, as long as the same offsets are chosen
for the baseline and monitor, DDWI can still resolve the time-lapse
changes.
We limited our study to acoustic data and P-wave velocity inver-

sion because we only want to demonstrate the effect of survey non-
repeatabilities. The real earth is always elastic, and often anisotropic
and attenuating. If all the other physics stay the same, and only the
P-wave velocity or density is locally changed, an acoustic DDWI
would be effective such as in reservoir fluid substitution scenarios.
When more physics are changed over time, more sophisticated in-
versions would be needed depending on how strong these changes
are S-wave velocity and anisotropy might change when reservoir
compaction occurs. Attenuation effect might change when a gas
field is in production. These changes would be reflected in the data
differences in DDWI. If the inversion is still acoustic, false changes
in P-wave velocity would likely be created to explain these data
differences. However, the DDWI frame work is not limited to
acoustic and it is straightforward to include more physics in the in-
version. The same principle also applies to schemes I and II. The
conclusions derived from our tests still hold for more advanced
physics.
The message we want to deliver in this paper is not significantly

dependent on 2D versus 3D or acoustic versus elastic. The focus
here is only on how DDWI is going to perform when the data
are not perfectly repeated because all the researches before this as-
sumed identical surveys, which is impossible. We agree that 3D
simulations will make the tests closer to reality, but we also think
the 2D tests are sufficient enough for the purpose of this research.
What we have not included in this work is to test all the nonrep-

eatability issues on schemes I and II. However, with all the under-
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standings, we obtained from the existing tests, it is not hard to gain
some insights for them. Because data sets are used separately,
schemes I and II will suffer from the contaminations for the same
reason as when surveys are perfectly repeated. In addition, deviated
surveys would likely lead to deviated parameter estimations, which
introduce spurious model differences. However, these deviations
are better constrained than those in DDWI. One obvious example
would be when the sources between the two surveys are shifted sig-
nificantly (e.g., several hundred meters), DDWI is definitely going
to fail because the data set subtraction is not valid. Schemes I and II
might still work properly because two surveys cover similar areas,
and the subtraction only happens between final models, although
the old issue of deviated estimations of the background model still
exists. The advantage of DDWI will certainly degrade as the non-
repeatabilities get stronger, and the degradation is gradual. In prac-
tice, it is safer to try all the schemes and compare them side by side
when the level of survey nonrepeatability is uncertain. What we pre-
sented here can be used as a reference to help identify the artifacts
and choose a more reliable result from these methods.

CONCLUSION

In summary, our synthetic examples show that DDWI gives better
results than conventional inversion schemes by suppressing back-
ground model updates when surveys are well repeated. The inves-
tigation of nonrepeatable noise shows that within a practical range
of data quality (e.g., a few degrees of phase rotation, a few meters of
positioning error, etc.), DDWI is robust enough to give a reliable
estimate of time-lapse P-wave velocity changes within the reservoir.
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