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SUMMARY

Seismic full waveform inversion (FWI) uses the gradient of
the objective function for computing model updates. This re-
quires computation of the forward and adjoint wavefields on
the current model estimate. Calculating the gradient on the
full computational domain is wasteful when it is only required
in a limited region of interest, as is the case in 4D seismic
and salt boundary estimation, for example. In this paper, a
local solver is introduced that accurately computes, up to ma-
chine precision, all the wavefield interactions between model
updates restricted to a region of interest and inhomogeneities
in the background model outside. The local solver therefore
generates exactly the same forward and adjoint wavefields in
the region of interest that a full domain solver would have gen-
erated. In this paper, the exact local gradient at the boundary
of a salt body is computed from these exact local wavefields.
A level set method uses this gradient to automatically update
the local salt boundary estimate.

INTRODUCTION

FWI is a computationally intensive problem. Improvements
have been made on many fronts, including the convergence
speed of the inverse problem (Métivier et al., 2013), the num-
ber of forward solves required (Krebs et al., 2009; Herrmann
et al., 2013), and the computational cost of a forward solve
(Wang et al., 2011; Zepeda-Núñez and Demanet, 2014). When
our primary interest is in a specific section of the model, the
problem can be reduced in size with further computational
gains as a result. One way of doing this is through seismic
redatuming (Berryhill, 1984; Wiggins, 1984) in which a seis-
mic survey is propagated to a virtual survey at the region of
interest. This approach introduces artifacts, as is demonstrated
by, for instance, Haffinger (2012). Another technique approxi-
mates the local wavefield within the region of interest in terms
of local model updates (i.e., scatterers). These wavefields can
then be used for inversion.

Several authors have investigated the computation of local wave-
fields with varying levels of approximation for many different
types of model configurations. A special configuration is an in-
finite homogeneous medium with scatterers introduced by per-
turbing the model in one region of interest (Teng, 2003; Gill-
man et al., 2013) or multiple disjoint regions (Grote and Sim,
2011). The restriction to infinite homogeneous media prevents
applications in seismology. Robertsson and Chapman (2000)
approximate the wavefield within a locally perturbed subdo-
main embedded in an inhomogeneous background medium,
but do not include the effect of the perturbed wavefield scatter-
ing at inhomogeneities in the background outside of the subdo-
main and subsequently reentering the subdomain. van Manen
et al. (2007) included these reentering waves when they intro-

duced an exact domain truncation method in the time domain
that will work for inhomogeneous background models. Using
their method, including these reentering waves, comes with a
significant cost. The method that is introduced in this paper
also generates the wavefield exactly in a locally perturbed sub-
domain embedded in an inhomogeneous background medium.
The approach shares similarities with the work of van Ma-
nen et al. (2007), but implements a boundary condition around
the subdomain in the frequency domain for computational effi-
ciency. In this paper, the local solver is applied to the problem
of automatically updating the shape of a salt body in the veloc-
ity model. A level set method (Lewis et al., 2012) parametrizes
and updates the shape of the salt body in an implicit way.

LOCAL SOLVER

To introduce the local solver, we group the nodes of the finite
difference grid into domains as is illustrated by Figure 1. The
full computational domain Ω is the union of all these domains:

Ω = A∪B∪∂C∪C. (1)

The perturbed model m(x) is defined as:

m(x) = m0(x)+δm(x), (2)

where m0(x) is the background model, which is the initial
guess or model in an inversion context. The model is the
squared slowness. The model perturbations δm(x) are restricted
to C (i.e., the yellow nodes in Figure 1), which is the interior
of the truncated domain:

supp(δm)⊂C, (3)

where supp() refers to the support of its argument. We stress
that the truncated domain ∂C∪C can have arbitrary shape and
is not limited to a square. We define the scattered field as:

us(x) = u(x)−u0(x), (4)

where us(x) contains all orders of scattering and u(x) is the
wavefield in the perturbed model satisfying

−m(x)ω2u(x,ω)−∆hu(x,ω) = f (x,ω), (5)

with ∆h the discrete Laplacian with node spacing h. In this
paper, a second-order accurate stencil is used. The wavefield
in the background model u0 satisfies

−m0(x)ω2u0(x,ω)−∆hu0(x,ω) = f (x,ω). (6)

The scattered field us can, without approximation, be expressed
as a summation along the boundary ∂C, excluding the corner
nodes.

us(y,ω) =−
∑

x∈∂C

1
h2

(
u∂C(x,ω)G∂C+1

0 (x,y,ω)

−G∂C
0 (x,y,ω)u∂C+1(x,ω)

)
, y ∈ B∪∂C. (7)
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Figure 1: The full mesh Ω is partitioned into A, B, ∂C, and
C. The node numbering used in the local solver is spiraling
inwards. The number of nodes in the truncated domain is n′n
and the number of boundary nodes is n′b.

Here we just state the result; a full derivation will be presented
in a paper that is currently being prepared for publication. The
symbols u∂C(x,ω) and u∂C+1(x,ω) are the perturbed wavefield
on boundary node x and one node to the interior, respectively.
The background Green’s functions satisfying (6) between the
node y, where the scattered field is evaluated, and the node x
on the boundary, and one node to the interior are G∂C

0 (x,y,ω)

and G∂C+1
0 (x,y,ω), respectively.

This equation for the scattered field is used to assemble a sys-
tem of equations defining the local solver. The unknowns are
grouped in vectors such as us

∂C representing the scattered field
on ∂C. Similarly, u∂C and u∂C+i represent the wavefield in the
perturbed model m on ∂C and i layers to the interior, respec-
tively. The node numbering in the truncated domain follows
the spiraling pattern illustrated in Figure 1.




−I I 0
I G∂C+1 −G∂C

0 −m(x)ω2 −∆h







us
∂C

u∂C

u∂C+1

u∂C+2

...




=




u0
∂C

0
0
0
...




,

(8)
The matrix in (8) is composed of block matrices. The block I
is the identity matrix of appropriate size. The blocks G∂C and
G∂C+1 contain the background Green’s functions, from bound-
ary ∂C and one layer to the interior, respectively, to the node
y in boundary ∂C where the scattered field is evaluated. The
block G∂C+1 contains the functions G∂C+1

0 (x,y,ω) from equa-
tion 7 and the block G∂C contains the functions G∂C

0 (x,y,ω),
where y is now a boundary node. These Green’s function block
matrices are the only dense blocks. Equation 8 is compartmen-
talized into three rows by horizontal lines. The first block row
represents (4) on all boundary nodes in ∂C. The second block
row expresses the scattered wavefield in terms of the perturbed
wavefield through (7) for each boundary node. The third block
row is the second-order-accurate Helmholtz operator in the in-

terior of the truncated domain.

PROPERTIES OF THE LOCAL SOLVER

In this section, we first discuss the precomputations required to
initialize the local solver defined in (8). After that, we discuss
the additional required steps for using the local solver in an
inversion context.

Initializing the local solver
In order to compute the local wavefield for a shot there are
three sets of Green’s functions in (8) that need to be precom-
puted.

• To fill the block G∂C, we require the background Green’s
functions from each of the n′b boundary nodes to all of
the other boundary nodes, with n′b defined in Figure 1.

• The block G∂C+1 requires precomputation of the back-
ground Green’s functions from each node on the bound-
ary to all nodes one layer to the interior of ∂C.

• The background wavefield on boundary ∂C is defined
as u0

∂C. It requires the background Green’s functions
from each source location to all the n′b boundary nodes.

With these background Green’s functions, the exact local wave-
field is computed in the truncated domain by solving (8). It
includes all interactions between perturbations in the interior
of the truncated domain (i.e., domain C) and any inhomogene-
ity outside of the truncated domain. All orders of scattering
are computed exactly, and the solution of (8) for each shot
is, up to machine precision, the same as what the full domain
Helmholtz solver would have produced for any perturbation
satisfying (3).

Using the local solver in an inversion context
To exclusively use the local solver in an inversion, we need to
be able to evaluate the objective function corresponding to the
locally perturbed model. When the solution of (8) is available,
we can use that to compute the scattered field at the receiver
locations y through (7). The wavefield u in the perturbed model
is evaluated at the receiver locations by adding the background
wavefield u0 from the source to this scattered wavefield us.
This requires additional background Green’s functions from
the receiver locations to the nodes in ∂C and one layer to the
interior as well as to the source locations.

With all these precomputed background Green’s functions, we
are able to compute the perturbed wavefield in the truncated
domain ∂C∪C and evaluate the residuals at the receivers us-
ing the local solver. In the computation of the adjoint field, the
residuals act as source terms at the receiver locations. Since
we have the background Green’s functions from the receiver
locations to the truncated domain, we can compute the adjoint
wavefield resulting from these residual forces locally. Each
residual source corresponds to a right-hand side vector in (8).
Instead of computing the adjoint wavefield contribution of each
source individually and summing the solutions, because of lin-
earity, we can sum the right hand side terms prior to solving
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(8). This way, the local solver computes the adjoint wave-
field from the residuals of a shot using a single solve. After
the required Green’s functions are computed using a full do-
main solver, we can generate exactly the same forward and ad-
joint wavefields in the truncated domain using the local solver.
Hence, exactly the same FWI gradient is obtained when these
wavefields are crosscorrelated as would be obtained when solv-
ing in the full domain.

The matrix in (8) is of size n′b + n′n and the number of un-
knowns is much smaller than the full domain equivalent, which
makes the local solves much faster. Instead of using a single
truncated domain we can also use multiple disjoint domains.
The equivalence of the solutions between the local and full do-
main solvers remains as long as the model perturbations are
restricted to the multiple domains. All orders of scattering be-
tween the perturbations in the domains and the inhomogeneous
background model are conserved. Derivation and application
will be presented in the paper that is currently being prepared.

APPLICATION TO SALT BOUNDARY INVERSION

The accuracy of the salt body in the velocity model plays an
important role in determining the quality of the subsalt mi-
grated image. In this paper, we attempt to improve a specific
section of the subsalt migrated image by improving the overly-
ing salt body in the velocity model. When using the automatic
salt updating code introduced by Lewis et al. (2012), we need
the FWI gradient along boundary of the salt to change its shape
in the velocity model. Since we only need the gradient at the
salt and not in the entire velocity model, this is a good appli-
cation for the local solver.

0 5 10 15 20 25 30 35

Horizontal coordinate (km)

0
2
4
6
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m
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1500

2500

3600

4600

V
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Figure 2: The initial velocity model with the black box repre-
senting the truncated domain in which we attempt to improve
the salt boundary estimate.

Problem description
We apply the combination of the local solver and the salt up-
dating code on a section of the BP2004 velocity model. We
start with the initial velocity model in Figure 2. The initial
sediment velocity is obtained by smoothing the true sediment
velocity. The boundary of the initial salt body is obtained from
the true salt body by applying oscillatory perturbations to it
with amplitude up to 150 m. The largest deviations are present
at the salt bottom, which is to be expected because poor illumi-
nation increases the uncertainty. To improve the salt boundary
estimate, we use the local solver to generate wavefields within
the truncated domain, represented by the black box in Figure
2. The true and the initial model are different inside and out-

Computational time

Full domain solves

Local solves

Local solver approach

Conventional solver approach

Time spent doing...

Figure 3: Schematic cost comparison for inversion in the trun-
cated domain using a full versus a local domain solver.

side the black box. In this experiment, we use the same con-
stant density acoustic finite difference code for generating the
data and the Green’s functions. No noise is added to the data.
We simulate a seismic survey with 200 shots, and we use 500
unique receiver locations equally spread over the surface. Each
shot includes receiver locations with an offset up to 10 km. We
perform a frequency sweep with inversion taking place at the
frequencies 2.5, 3.0, 3.5, 4.5, 5.5, and 7.0 Hz.

Cost analysis
At each FWI iteration of each frequency, we first compute the
gradient, which requires 200 forward wave solves and 200 ad-
joint wave solves (i.e., one for each shot). We then perform a
line-search requiring on average two evaluations of 200 wave
solves each. This brings the total number of wave solves at a
specific frequency to 8000 when 10 iterations take place. The
computational time if we had used a full domain solver for
these 8000 wave solves is represented by the upper bar in Fig-
ure 3. For this specific example, the number of background
Green’s functions that must be precomputed is 2550. The red
component of the lower bar represents the cost of precomput-
ing these. The yellow component of the lower bar corresponds
to the amount of computational time the local solver needs to
compute the same 8000 wavefields locally. A local wave solve
is approximately 20 times faster than a full domain solve for
this example.

Figure 3 shows that as long as we are willing to accept that
model updates are restricted to the truncated domain, using the
local solver is an economical choice. An additional advantage
of the local solver is that the precomputation of the background
Green’s functions is the majority of the work and it only needs
to be done once. Performing multiple simultaneous local in-
versions with different inversion parameters is cheap because
of this. Graphically, the cost of each additional inversion using
the local solver is visualized by adding another yellow block
to the bottom horizontal bar in Figure 3. This is far cheaper
than performing an additional inversion using the full domain
solver, which would correspond to top bar in Figure 3. The lo-
cal solver also makes the inversion procedure more interactive,
because the duration of each inversion is reduced by a factor
of 20 in this example.

We again stress that each locally computed wavefield is exactly
the same as the solution of the full domain solver as long as we
restrict model updates to the interior of the truncated domain.
This can be seen in Figure 4. The solutions have a relative
difference on the order of 1e− 13, independent of the shape
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Figure 4: Real part of the wavefield within the truncated do-
main. The solutions from the full domain solver and the local
solver are displayed for a shot at the frequency 2.5 Hz.

and amplitude of the model perturbation. Using |.|2 for the
least squares norm, the relative difference is defined as

ε =
|u f −ut |2
|u f |2

. (9)

Results

The local solver significantly improves the salt boundary esti-
mate at most locations. Figure 5 shows updates in the order of
150 m. Outside of the truncated domain, the inverted velocity
model is equal to the initial velocity model, because updates
were limited to the truncated domain. So, the local inversion
results in Figure 5 are embedded in the bulk initial model of
Figure 2.

We use the true, initial, and inverted velocity models in reverse
time migration (RTM) with data synthesized using a variable
density time domain solver. Figure 6 compares the migration
results in a region just below the right side of the truncated
domain. The migration in the initial velocity model is severely
distorted by the incorrect shape of the overlying salt. Many
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Figure 5: The local inversion significantly improved the salt
boundary at most locations. Here we show improvement at
a representative section of the salt bottom. The arrows show
how the initial model salt boundary was changed.

of the features that are present in the true model have lower
amplitude or are not recognizable at all. It is easy to observe
how the improved shape estimate of the salt body enhances the
migrated images. This is because the inverted salt shape better
focuses the energy.
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Figure 6: Comparison of subsalt RTM images on the true, ini-
tial, and inverted velocity models

CONCLUSIONS

In this paper, we introduced a local wavefield solver. We demon-
strated how the local solver generates exactly the same wave-
field as a full domain solver, without making any approxima-
tion. We then used the local solver to improve the estimate of
the salt boundary. When we have specific interest in improving
the migrated image below the salt body, improving the shape of
the overlying salt body has a large impact. For the purpose of
updating the salt boundary locally, computing full domain gra-
dients is wasteful. In this paper, we showed that using the local
solver for this inversion is economical. The velocity model is
improved with positive results for the subsalt migrated image.
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