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SUMMARY

Determining the propagation direction of waves in a
wavefield is important in several seismic imaging tech-
niques and applications. This can be achieved using the
Poynting vector method, but it performs poorly when
waves overlap, returning incorrect wave amplitude and
direction. An alternative, the local slowness method,
is capable of separating overlapping waves, but suffers
from low angular resolution. We describe modifications
of these two approaches that improve the ability to ex-
tract the wave amplitude propagating in different direc-
tions. The primary modification is the addition of a
wavefront orientation separation step. We evaluate the
original and modified methods’ ability to separate six
overlapping waves in a constant velocity model and find
that the modifications significantly improve the results.

INTRODUCTION

The propagation directions of waves can be used to con-
struct Angle domain common image gathers (ADCIGs),
which are used for velocity analysis (Biondi and Symes,
2004) and extracting Amplitude versus angle (AVA) in-
formation (Yan and Xie, 2012b), to attenuate backscat-
ter artifacts in Reverse Time Migration (RTM) (Costa
et al., 2009), and in illumination analysis (Yang et al.,
2008). Several methods have been proposed for extract-
ing directional information from finite-frequency wave
propagation schemes. One of these is the Poynting vec-
tor method (Yoon and Marfurt, 2006), which is compu-
tationally efficient, but makes the assumption that the
wavefield does not contain overlapping waves propagat-
ing in different directions. Another is the local slowness
method (Xie et al., 2005), which does allow overlapping
waves, but suffers from low angular resolution. In this
paper we propose modifications of these two methods to
improve these deficiencies.

We start by describing the Poynting vector and local
slowness methods. Following this, we explain the mod-
ifications that we propose to apply to them, primarily
consisting of the addition of a wavefront orientation sep-
aration step, to enhance the ability to separate overlap-
ping waves. Finally, we examine the effectiveness of the
new methods compared to the Poynting vector and local
slowness methods.

PREVIOUSLY PROPOSED METHODS

In this section we describe the Poynting vector and local
slowness methods for separating a wavefield by propaga-

tion direction.

Poynting vectors

The Poynting vector method of determining wave prop-
agation direction was proposed by Yoon and Marfurt
(2006) as a means of determining apparent scattering
angle. It is not limited to calculating scattering angle,
and so may also be used in applications where the prop-
agation directions of the source and receiver wavefields
must be known independently, such as in illumination
compensation (Yang et al., 2008).

The Poynting vector method calculates the propagation
direction ̂𝜓 at a point 𝐱 and time 𝑡 of wavefield 𝑢 using

̂𝜓(𝐱,𝑡;𝑢) = −𝜕𝑢(𝐱,𝑡)
𝜕𝑡 ∇𝑢(𝐱,𝑡) ∣ 𝜕𝑢(𝐱,𝑡)

𝜕𝑡 ∇𝑢(𝐱,𝑡)∣
−1

. (1)

The method assumes that there are no overlapping waves
(Patrikeeva and Sava, 2013), so the method assigns the
full amplitude at each point to a single propagation di-
rection.

Local slowness

An alternative approach, called the local slowness method,
was proposed by Xie et al. (2005). This method was ini-
tially developed to analyze near-source energy partition-
ing, but it has also been applied to determining propaga-
tion directions for illumination compensation (Xie and
Yang, 2008) and constructing ADCIGs (Yan and Xie,
2012a). The method sums along local slowness direc-
tions in spacetime,

𝑢𝑠(𝐱,𝐩,𝑡) = 1
𝐼𝐱

∑
𝐱′

𝑊(𝐱′ −𝐱)𝑢(𝐱′, 𝑡−𝐩 ⋅ (𝐱′ −𝐱)), (2)

where 𝑢𝑠 is the wavefield containing only waves prop-
agating in the direction ̂𝜓, 𝐩 = �̂�

𝑐 is the slowness, and
𝑊 is a space window of length 𝐼𝐱 centered on 𝐱. In
contrast to the Poynting vector method, this approach
is capable of separating a wavefield even when it con-
tains overlapping waves propagating in different direc-
tions. The separation of overlapping waves is exact for
plane waves in a constant velocity medium if the win-
dow 𝑊 is sufficiently large, but when these assumptions
aren’t satisfied overlapping waves can still cause incom-
plete separation.

MODIFIED METHODS

In this section we propose modifications to the Poynt-
ing vector and local slowness methods. These primarily
consist of preceding the methods by a separation of the
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Separating a wavefield by propagation direction

wavefields by wavefront orientation, so we first discuss
techniques by which this may be achieved. The pro-
posed modification allows the Poynting vector method
to separate overlapping waves and enhances the reso-
lution of the local slowness method. We describe the
methods in the 2D case for simplicity, however they
may be extended to 3D without difficulty. We also
assume that the wave propagation occurs in isotropic,
non-attenuating media.

Wavefront orientation separation

The orientation of a wavefront, ̂𝜓, is the direction of
its gradient. In isotropic media, waves travel parallel
to their wavefront orientation (i.e., the wavefront is per-
pendicular to the ray). A wavefront with orientation

̂𝜓 must therefore belong to a wave propagating in the
direction ̂𝜓 or − ̂𝜓. For locally planar waves, the wave
amplitude is locally constant perpendicular to ̂𝜓, and
oscillatory parallel to it. In 2D we may refer to a wave-
front of orientation ̂𝜓 or − ̂𝜓 as having orientation angle
𝜓 ∈ [0,𝜋), where 𝜓 is the angle from the positive 𝑥 axis
to whichever of ̂𝜓 or − ̂𝜓 lies in the positive 𝑧 domain.

The separation into wavefront orientation angles can be
accomplished by several means, including through the
use of the Fourier transform, the Curvelet transform
(Candès et al., 2006), and time domain Local slant stack
(LSS). We describe only the last of these for conciseness.

Local slant stack
LSS uses the fact that locally planar waves are oscilla-
tory perpendicular to the wavefront and approximately
constant along it. Summing along a wavefront in space
will yield a non-zero value. Any direction not parallel
to the wavefront should sum to zero due to the oscilla-
tory property, if the summation length is sufficiently
long. If the time period over which the pulse is os-
cillatory (or almost oscillatory) is 𝑇 , then the corre-
sponding spatial length is 𝑐(𝐱)𝑇 , where 𝑐 is the wave
speed, which we assume does not vary significantly over
this distance. To make use of this property, we there-
fore need to sum along a wavefront over the distance
[− 𝑐(𝐱)𝑇

2 ∶ 𝑐(𝐱)𝑇
2 ] around the point 𝐱 in order to prevent

the calculated amplitude along a wavefront from being
affected by a perpendicular wavefront also centered on
𝐱. To avoid interference between wavefronts not perpen-
dicular, or not centered on 𝐱, we would need to sum over
a larger distance. Our assumptions about the planar na-
ture of the wavefront and the locally constant velocity
are less likely to be valid at larger distances, however.
Decomposing the wavefield into 𝑁𝑠(𝑡) equally spaced
wavefront orientation angles (which will allow us to sep-
arate into 2𝑁𝑠(𝑡) propagation directions later) therefore
requires a summation length of

𝐼𝐱 = 𝑐(𝐱)𝑇
sin(Δ𝜓) , (3)

where
Δ𝜓 = 𝜋

𝑁𝑠(𝑡) . (4)

The angular resolution (Δ𝜓) obtainable with this method
is approximately inversely proportional to 𝐼𝐱 when Δ𝜓
is small. The maximum possible length 𝐼𝐱 is determined
by the smoothness of the model (in smooth models the
length over which the approximations of the method are
valid will be longer, and so a larger 𝐼𝐱 can be used), so
resolution is inversely proportional to model smoothness
(a smoother model allows the separation of waves prop-
agating in more closely spaced directions). Resolution
is approximately proportional to 𝑐(𝐱)𝑇 , the local wave
speed and the shortest oscillatory time of the waves. Al-
though it is a spatial quantity, in practice the summa-
tion length is often specified as the summation time 𝐼𝑡,
as 𝐼𝐱 = 𝐼𝑡𝑐(𝐱) varies in space with 𝑐(𝐱).
To separate the wavefield into waves with different wave-
front orientation angles with LSS, we sum along differ-
ent orientation angles at each point 𝐱, and divide by the
length of the sum to obtain the amplitude of the waves:

𝑢𝑜(𝐱,𝜓,𝑡) =
𝐼𝐱
2

∑
𝑠=− 𝐼𝐱

2

𝑢(𝐱 +𝑠 ̂𝜓⟂, 𝑡)
𝐼𝐱

, (5)

where ̂𝜓⟂ is the direction along a wavefront oriented
with angle 𝜓 (i.e., ̂𝜓⟂ = (−sin(𝜓) ̂𝑥,cos(𝜓) ̂𝑧)), 𝑢 is the full
wavefield, 𝑢𝑜 is the scalar field containing the amplitude
of waves with wavefront orientation angle 𝜓 at position
𝐱 and time 𝑡, and 𝐼𝐱 = 𝐼𝑡𝑐(𝐱) is the summation length.
If 𝑢 is not defined at spatial locations requested by this
summation, interpolation may be used.

As waves propagating in both the directions ̂𝜓 and − ̂𝜓
have wavefront orientation 𝜓, wavefront orientation sep-
aration alone cannot determine propagation directions.

Method 1: Modified Poynting vector method

We wish to determine the propagation directions and
amplitudes of the 𝑁(𝐱,𝑡) waves passing through the
point 𝐱 at time 𝑡. If max(𝑁) ≤ 1, the Poynting vec-
tor method works well and is computationally efficient,
however it fails when 𝑁 > 1.

In this modified method we separate the wavefield into
waves with different wavefront orientations, and apply
two filters, based on the Poynting vector method, to
determine the propagation directions.

By separating the wavefield by orientation angle 𝜓, we
hope that

𝑚𝑎𝑥(𝑁 ′(𝐱,𝜓,𝑡)) ≤ 1, (6)
where 𝑁 ′ is the number of waves passing through the
point 𝐱 at time 𝑡 that have a wavefront at point 𝐱 ori-
ented with angle 𝜓. If this condition is satisfied, then
we may successfully apply the Poynting vector method
for each direction ̂𝜓 to determine the propagation am-
plitude in that direction. As wavefront orientation an-
gle separation will not separate two overlapping waves
propagating in opposite directions ̂𝜓 and − ̂𝜓, since both
have the same wavefront orientation angle, the condi-
tion (6) can never be satisfied in this case. This method
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Separating a wavefield by propagation direction

is therefore incapable of separating overlapping waves
propagating in opposite directions.

Performing this separation on a sufficient number of
time steps to calculate a time derivative (at least two),
we calculate the Poynting vectors for each separated
wavefront orientation, ̂𝜓𝑝(𝐱,𝑡;𝑢𝑜(𝐱,𝜓,𝑡)), using Equa-
tion 1, and the apparent wave propagation speed using

𝑐𝑎(𝐱, ̂𝜓, 𝑡) = ∣𝜕𝑢𝑜(𝐱,𝜓,𝑡)
𝜕𝑡 (𝜕𝑢𝑜(𝐱,𝜓,𝑡)

𝜕 ̂𝜓
)

−1
∣ . (7)

The calculated propagation speed will be incorrect near
the peaks and troughs of the wave, as the spatial deriva-
tive at these locations will be close to zero, making the
result unstable. We therefore smooth the calculated
speed, weighted by the absolute value of the spatial
derivative of 𝑢𝑜(𝐱,𝜓,𝑡).

Although the wavefront orientation angle 𝜓 is in the
range [0,𝜋), the wave propagation direction unit vector

̂𝜓 covers the full circle because each 𝜓 can produce a
wave propagating in ̂𝜓 or − ̂𝜓. Both ̂𝜓𝑝 and − ̂𝜓𝑝 will
therefore be computed using 𝑢𝑜(𝐱,𝜓,𝑡). The same ap-
plies to the calculation of 𝑐𝑎(𝐱, ̂𝜓, 𝑡).

If a wave is propagating in the direction ̂𝜓, then ̂𝜓𝑝
should point in the same direction if the medium is
isotropic. We also know that the wave propagation
speed should be 𝑐(𝐱). We exploit this to determine
whether the wave with wavefront orientation angle 𝜓 is
propagating in the direction ̂𝜓 or − ̂𝜓, and to attenuate
artifacts caused by violations of the method’s assump-
tions. To achieve this, we calculate two filters. The first
deals with the propagation direction,

𝑓𝑖𝑙𝑡𝑎𝑛𝑔(𝐱, ̂𝜓, 𝑡) = (1−arccos(| ̂𝜓𝑝 ⋅ ̂𝜓|)/𝜋)𝑑, (8)

where 𝑑 is a parameter to adjust how severely errors are
treated. This expression computes the angular distance
between the calculated propagation direction, ̂𝜓𝑝, and
the assigned propagation direction, ̂𝜓, derived from the
wavefront orientation. If the distance is zero, the filter
has value 1. If the propagation direction is the opposite
to the assigned direction, the filter has value 0.

For the second filter, we penalize departures of the ap-
parent wave speed from the actual wave speed,

𝑓𝑖𝑙𝑡𝑐(𝐱, ̂𝜓, 𝑡) = 1−min(|𝑐(𝐱,𝑡)−𝑐𝑎(𝐱, ̂𝜓, 𝑡)|/𝑚𝑎𝑥𝑒𝑟𝑟,1),
(9)

where 𝑚𝑎𝑥𝑒𝑟𝑟 is the maximum permissible error in 𝑐,
for example 1000 m/s.

To obtain the wavefield separated by propagation direc-
tion, we multiply the wavefield separated by wavefront
orientation with the two filters,

𝑢𝑠(𝐱, ̂𝜓, 𝑡) = 𝑢𝑜(𝐱,𝜓,𝑡)𝑓𝑖𝑙𝑡𝑎𝑛𝑔(𝐱, ̂𝜓, 𝑡)𝑓𝑖𝑙𝑡𝑐(𝐱, ̂𝜓, 𝑡). (10)

Method 2: Modified local slowness

While the local slowness method is already capable of
separating overlapping waves, preceding its application
by a wavefront orientation step improves the achievable
resolution.

Wavefront orientation separation has better resolution
than the local slowness method for small differences in
propagation direction, but its inability to distinguish be-
tween waves propagating in opposite directions means
that it has poor resolution for large differences in prop-
agation angle, the regime in which the resolution of the
local slowness method is highest. By combining both
methods we derive the benefits of wavefront orientation
separation’s good resolution at small angles while also
retaining the local slowness method’s ability to separate
waves with large propagation angle differences.

If a wave, propagating in the direction ̂𝜓, can be lo-
cally approximated by a plane wave, and the local wave
speed is approximately constant, the wave travels along
the path described by Equation 2 of the local slowness
method. Furthermore, wavefronts along this path that
are propagating in the direction ̂𝜓 should have a wave-
front orientation angle of 𝜓. To apply this last observa-
tion, we modify Equation 2 to use the output of wave-
front orientation separation,

𝑢𝑠(𝐱, ̂𝜓, 𝑡) =
𝐼𝑡
2

∑
𝑡′=− 𝐼𝑡

2

𝑢𝑜(𝑤(𝑡′,𝐱,𝜓,𝑡),𝜓, 𝑡′)
𝐼𝑡

. (11)

Including the wavefront orientation separation step in-
creases the computational cost of the method compared
to the original local slowness approach, but it improves
the method’s ability to distinguish between waves with
small differences in propagation direction. This means
that for the local slowness method to have sufficient res-
olution to separate such waves, the assumptions of the
method must hold over a larger distance from the point
being separated.

RESULTS

In this section we test the angular resolution under the
idealized conditions of constant velocity. As the resolu-
tion of the summation-based approaches (the local slow-
ness method and methods 1 and 2) is limited by the
summation distance, we choose 𝐼𝑥 for each method so
that the maximum summation distance from the point
being separated is the same for all of these methods.

In order to test the ability of the methods to separate
overlapping waves, we create a wavefield using six sources
arranged around a hemisphere of radius 750 m. The
sources emit a 20 Hz Ricker wavelet, and the wave speed
is constant everywhere at 1500 m/s. We attempt to sep-
arate the wavefield 0.5 s after the peak source input,
as the six waves are crossing. The unseparated wave-
field at this time is shown in Figure 1c. For method
1 and the local slowness method, we use 0.17 s, twice
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Separating a wavefield by propagation direction

the duration of the source wavelet, as the summation
time. According to Equation 3, this allows method 1 to
separate waves with propagation directions differing by
at least 30° (which is the minimum difference between
waves in the example wavefield) without interference.
For method 2 we use a summation time of 0.12 s.

In Figure 1 we show the amplitude of waves determined
by different methods to be propagating in each direc-
tion at the chosen point, where the waves from the six
sources are overlapping. As expected, the Poynting vec-
tor method fails in this test as its assumption that waves
do not overlap is violated. The peak angle of the lo-
cal slowness method is similar to that of the Poynting
vector method (not visible in the displayed figures due
to clipping), as the angular resolution with the given
summation time is not sufficient to distinguish between
the six propagation directions. Both of the modified
methods produce results that are quite close to the true
separation.

Poynting vectors

(a)

Local slowness

(b)

0

0.2
0 0.2

z 
(k

m
)

x (km)
(c)

True

(d)

Method 1

(e)

Method 2

(f)

Figure 1: Results of directional separation. Propagation
angle is on the polar axis, while the radial axis represents
amplitude. The displayed amplitude range is the same
for all polar plots. (c) shows a time slice of the central
portion of the input wavefield with six waves overlapping
obliquely.

To investigate the behavior of the methods under less
idealized conditions, we consider the backpropagated re-

ceiver wavefield for a single shot in a 2D slice of the
SEAM model (Fehler and Larner, 2008). We use a sepa-
ration time of 0.266 s for the local slowness method and
method 1, and 0.188 s for method 2.

As we do not know the true directional decomposition
of this wavefield, we can only judge the results on how
visually plausible they appear. One propagation direc-
tion (toward the bottom right) of the resulting separated
wavefields at a single time step is shown in Figure 2. Fig-
ure 2a shows the full wavefield at this time step. Focus-
ing on the effect of the overlapping wave A, we see that
the low resolution of the local slowness method causes
A to be clearly visible despite propagating in a different
direction to that chosen. The overlapping wave A has a
smaller impact on the output of the modified methods.

1

5
8 12

z 
(k

m
)

x (km)

A

(a)

1

5
8 12

z 
(k

m
)

x (km)
(b)

1

5
8 12

z 
(k

m
)

x (km)
(c)

1

5
8 12

z 
(k

m
)

x (km)
(d)

Figure 2: (a) Unseparated wavefield. (b) Local slowness
method. (c) Method 1. (d) Method 2.

CONCLUSION

This paper presents modifications of the Poynting vec-
tor and local slowness methods for separating a wave-
field into waves propagating in different directions. Un-
like the previously proposed Poynting vector method,
the modified version is capable of performing the sep-
aration even when there are overlapping waves. The
local slowness method is also able to do this, but, as
we demonstrate, it has poorer angular resolution than
the modified version we propose. Separating the wave-
field by wavefront orientation, a key component of both
of our modified methods, provides good angular resolu-
tion, enabling them to separate six overlapping waves
when both the Poynting vector and local slowness meth-
ods fail to do so.
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