
Joint location of microseismic events in the
presence of velocity uncertainty

Oleg V. Poliannikov1, Michael Prange2, Alison E. Malcolm3, and Hugues Djikpesse2

ABSTRACT

The locations of seismic events are used to infer reservoir
properties and to guide future production activity, as well as
to determine and understand the stress field. Thus, locating
seismic events with uncertainty quantification remains an
important problem. Using Bayesian analysis, a joint proba-
bility density function of all event locations was constructed
from prior information about picking errors in kinematic
data and explicitly quantified velocity model uncertainty. Si-
multaneous location of all seismic events captured the abso-
lute event locations and the relative locations of some events
with respect to others, along with their associated uncertain-
ties. We found that the influence of an uncertain velocity
model on location uncertainty under many realistic scenarios
can be significantly reduced by jointly locating events.
Many quantities of interest that are estimated from multiple
event locations, such as fault sizes and fracture spacing or
orientation, can be better estimated in practice using the pro-
posed approach.

INTRODUCTION

Locating seismic events is an important problem in global seis-
mology and in reservoir exploration. Applications of this problem
vary in scale from earthquake characterization to hydraulic fracture
monitoring. Traditionally, events are located individually, for exam-
ple, from variants of Geiger’s method by ray tracing them from
receiver locations using their respective arrival time and polarization
estimates. It has been shown (Richards et al., 2006; Hulsey et al.,
2009; Eisner et al., 2010; Kummerow, 2010) that this approach

ignores important information that couples data from different
events and thus ties them together.
Event locations are usually understood in either absolute or rel-

ative terms (Slunga et al., 1995). Absolute locations are defined
globally with respect to a fixed coordinate system. Relative location
is the location of an event relative to other events in the vicinity.
Suppose that several microseismic events originate from the same
fracture; if we move the fracture by moving all events in it by a
constant distance in a specified direction, then the absolute locations
of those events will change. However, the relative location of any
given event in this fracture with respect to all the rest will remain the
same. The primary advantage of relative location over absolute lo-
cation is that it is often less sensitive to the uncertainties in the
velocity model that lie between the cluster of events and the receiver
array. Because these velocity uncertainties tend to reposition the
cluster as a whole, they have a much smaller impact on the relative
locations within the cluster (Waldhauser and Ellsworth, 2000;
Zhang and Thurber, 2003). At the same time, the reduction of
uncertainty in relative location is not achieved automatically (Mi-
chelini and Lomax, 2004), and proper analysis is required for quan-
tifying and comparing absolute and relative location uncertainty
(Poliannikov et al., 2011, 2013).
The joint location that we advocate in this paper is a way to re-

cover the absolute and relative positions of all recorded events.
Given recorded arrival-time data, we will construct a joint location
estimator that is a multidimensional probability distribution of the
locations of all recorded events. This probability distribution con-
tains a statistical description of the events, including individual
event locations as well as the correlations among these locations.
Such correlations are in part due to uncertainty in the velocity
model.
In most situations, event location is not the final goal, but a step

toward a more complete description of geophysical features such as
fractures, faults, pressure fronts, etc. Physical quantities, such as
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fracture spacing and fault orientation, along with their associated
uncertainties, can be inferred from the posterior distribution of
the event locations and origin times given recorded data is then ob-
tained by Bayes’ rule (Tarantola, 2005; Lomax et al., 2009). Frac-
ture spacing, for example, can be thought of as the average distance
among the events in neighboring fractures. Fracture size is related to
the distance among events in the same fracture. The joint distribu-
tion of all event locations may be used to compute any function of
those event locations, for example, the mean fracture spacing and its
associated uncertainty.

THEORY

Problem setup

We assume that we have Ns events recorded on an array of Nr

receivers and that we have some knowledge of the velocity model
V. We denote the seismic event locations s ¼ fs1; : : : ; sNs

g, where
the si are individual event locations. We assume that the possibly
heterogeneous seismic velocity model V is uncertain. We suppose
that V belongs to some family of admissible velocity models V. The
probability distribution pðVÞ determines the probability of any
given velocity model.
Direct arrivals from all events are recorded at receiver loca-

tions rj, and arrival times T̂ ¼ fT̂α; i; jg are estimated. Here, α ∈
fP; S; : : : g denotes the recorded phase, i ∈ f1; : : : ; Nsg the event
index, and j ∈ f1; : : : ; Nrg the receiver index. In addition to esti-
mating direct arrival times, we may also correlate arrivals from
events i and i 0 and estimate correlation lags τ̂ ¼ fτ̂α; i; i 0 ; jg, which
are estimates of the arrival time differences among pairs of events.
We assume that the arrival times and lags so obtained are per-

turbed by Gaussian noise, i.e.,

T̂α; i; j ¼ T
∘
i þ Tαðsi; rjjVÞ þN ð0; σ2α;i;jÞ (1)

τ̂α;i;i 0;j ¼ T
∘
i 0 − T

∘
i þ ταðsi; si 0 ; rjjVÞ þN ð0; ζ2α;i;i 0;jÞ; (2)

where T
∘
i is the unknown origin time of event i, Tαðsi; rjjVÞ is the

predicted traveltime for phase α in velocity model V,

ταðsi; si 0 ; rjjVÞ ¼ Tαðsi 0 ; rjjVÞ − Tαðsi; rjjVÞ (3)

is the predicted lag among the direct arrivals for phase α from events
i and i 0, andN ð·; ·Þ denotes a Gaussian random variable with given
mean and variance.
The problem is to estimate all event locations s from the observed

T̂ and τ̂. We are not concerned here with using additional data that
may be available such as the polarization of the incoming waves.
Our goal is to better use available kinematic data. When the noise in
polarization data can be assumed uncorrelated with that in kin-
ematic data, results from a separate polarization analysis may be
combined with those from our proposed methodology by simply
multiplying the respective probability density functions.

Joint location in a known velocity model

Before tackling the entire problem of joint location in an uncer-
tain velocity model, we begin with a simplified case in which the
velocity model is known. The data likelihood function pðT̂; τ̂ ∣ s;
T
∘
; VÞ describes the probability of observing T̂ and τ̂, given pre-

scribed event locations s and origin times T
∘
. Under the assumptions

stated in the previous section, the likelihood function has the form,

pðT̂; τ̂js;T
∘
;VÞ∝ exp

2
64−1

2

X
α;i;j

�
T̂α;i;j−T

∘
i−Tαðsi;rjjVÞ
σα;i;j

�2

3
75

× exp

2
64−1

2

X
α;i<i 0 ;j

�
τ̂α;i;i 0 ;j− ταðsi;si 0 ;rj ∣VÞ−T

∘
i 0 þT

∘
i

ζα;i;i 0 ;j

�2

3
75;
(4)

in which the normalization constant is dropped for brevity. It is as-
sumed here that the noise in estimated arrival times and lags, and
hence T̂ and τ̂, are uncorrelated. When T̂ and τ̂ are correlated sep-
arately or jointly, the right side of equation 4 will contain a corre-
sponding covariance matrix that describes this correlation. If only a
subset of measurements is available, then the summation is under-
stood to go over the available phases. The posterior distribution of
the event locations and origin times in the given data is then ob-
tained by Bayes’ rule (Tarantola, 2005; Lomax et al., 2009):

pðs;T
∘
jT̂; τ̂; VÞ ¼ pðT̂; τ̂js;T

∘
; VÞpðs;T

∘
jVÞRR

pðT̂; τ̂js;T
∘
; VÞpðs;T

∘
jVÞ dT

∘
ds

∝ pðT̂; τ̂js;T
∘
; VÞpðs;T

∘
jVÞ

∝ pðT̂; τ̂ ∣ s;T
∘
; VÞpðs;T

∘
Þ; (5)

in which we assume in the last expression that the prior pðs;T
∘
Þ is

independent of the velocity model.
Throughout the paper, we will assume that the prior distribution

of the locations and their origin times is Gaussian; i.e., pðs;T
∘
Þ∼

N ðμ;ΣÞ. In numerical simulations, we will use flat priors (infinite
variances) to remove the effect of a prior on shown results. The
choice of a prior is very important in any Bayesian inversion.
We do not address it any further in this work.
If we are interested just in the event locations and not their origin

times, then we simply integrate the posterior distribution given in
equation 5 over all origin times T

∘
yielding

pðsjT̂; τ̂; VÞ ¼
Z

pðs;T
∘
jT̂; τ̂; VÞdT

∘

∝
Z

pðT̂; τ̂js;T
∘
; VÞpðs;T

∘
ÞdT

∘

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IðsÞ

: (6)

The integral IðsÞ in equation 6 can be computed analytically
when the integrand is Gaussian with respect to T

∘
:

IðsÞ ¼
Z

pðT̂; τ̂js;T
∘
; VÞpðs;T

∘
ÞdT

∘

∝
Z

exp

�
−
1

2
T
∘ �
AT

∘
þ B�T

∘
þ C

�
dT

∘

∝ exp

�
1

2
B�A−1Bþ C

�
;

(7)

where A, B, and C are defined in Appendix A.
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Gaussian approximation of the joint distribution

Although the posterior joint distribution of event locations can be
written exactly, it may be difficult to use in practice. Assuming for
simplicity that we are interested in the event locations only, and
having marginalized the origin times as spelled out in the previous
section, the joint distribution is a function of 3Ns variables that
needs to be computed numerically. Properly normalizing it requires
the evaluation of the right side of equation 6 at all s. Although con-
ceptually straightforward, this computation is numerically costly
when Ns becomes large. To simplify the computation and represen-
tation of the distribution, we will approximate the posterior distri-
bution with a multivariate normal distribution:

pðsjT̂; τ̂; VÞ ∼N ðs0;ΣsÞ: (8)

This approximates the distribution by its first two moments and is
appropriate when examining the covariance structure in a joint dis-
tribution. If the posterior is well approximated by a multinormal
distribution, its mean s0 and covariance matrix Σs are found as fol-
lows: The mean s0 is found by solving the maximization problem

s0 ¼ arg max
s
IðsÞ; (9)

and a local estimate of the covariance about s0 is given by

ðΣ−1
s Þm;n ≈ −

∂2 log IðsÞ
∂sm∂sn

����
s¼s0

; (10)

where sm and sn span all 3Ns coordinates of all event locations. If
the posterior is not well approximated by a multinormal distribution,
the mean and covariance that provide the best fit may be estimated
by a sampling approach, such as the Markov chain Monte Carlo.

Joint location in uncertain velocity model

Equations 5 and 8 provide expressions for the posterior distribution
given a known velocity model. When the velocity model is uncertain,
i.e., it is sampled from a family of admissible velocity models V, we
obtain the velocity-independent form of the posterior by conditioning
on the velocity V:

pðs;T
∘
jT̂; τ̂Þ ∝ EV ½pðT̂; τ̂js;T

∘
; VÞpðs;T

∘
Þ�; (11)

where EV ½·� denotes the expectation over all V ∈ V. See Appendix B
for the derivation of equation 11. If we are interested just in the
locations s, then we can, as before, integrate the posterior of ðs;T

∘
Þ

over T
∘
:

pðsjT̂; τ̂Þ ¼
Z

pðs;T
∘
jT̂; τ̂Þ dT

∘

¼ EV

�Z
pðT̂; τ̂js;T

∘
; VÞpðs;T

∘
Þ dT

∘
�
: (12)

The integral inside the expectation is computed analytically as spelled
out in equation 7 and below. To compute the velocity-independent
distribution numerically, we generate L velocity models fVlgLl¼1

from V, compute the products of the likelihood function and the prior
in parallel, and average them. Equations 11 and 12 are general and do

not require any assumptions on the specific form of the distributions
in the right sides. However, if the distributions inside the expectations
are Gaussian, then the resulting posterior in the left side will be a
Gaussian mixture.
It may be tempting to estimate the event location uncertainty by

averaging velocity-dependent posteriors. For example, we could
locate events in several plausible velocity models and use the ob-
served variation as a measure of uncertainty. As explained in Ap-
pendix B, this approach to uncertainty quantification is valid when
the traveltime data are statistically independent of the velocity; i.e.,
no additional characterization of the velocity model by tomography
using microseismic data is possible. When that assumption is not
satisfied, this method may lead to biased location estimates and/or
incorrectly estimated uncertainties.

Quantities of interest

Estimated locations of seismic events are often not the final goal
of seismic monitoring. The interest is typically in geologic features
that the estimated seismic event locations can help to reveal (Mi-
chaud et al., 2004; Bennett et al., 2005; Huang et al., 2006). Assum-
ing that most microseismic events originate in fractures, clouds of
microseismic events reveal the fracture size, position, orientation,
etc. Such quantities of interest can be written as functionals of the
estimated event locations fðsÞ. Because s is a random vector, fðsÞ
becomes a random variable. We can use probability theory to com-
pute the distribution of fðsÞ or estimate its statistics.
The mean and variance statistics can be written analytically; e.g.,

EfðsÞ ¼
Z

fðsÞpðsjT̂; τ̂Þds (13)

or

VarfðsÞ ¼
Z

ðfðsÞ − EfðsÞÞ2pðsjT̂; τ̂Þds: (14)

Alternatively, the distribution of fðsÞ can be computed numeri-
cally by sampling the joint locations and applying the function f.

NUMERICAL RESULTS

We illustrate the proposed methodology with numerical exam-
ples for a typical problem of monitoring with a single borehole array
of receivers. We have an isotropic layered velocity model and two
fractures, as shown in Figure 1. The 16 receivers are equally spaced
in a vertical well at depths from 1700 to 2200 m. Two sets of events
from two neighboring fractures, F1 and F2 (nine events in each frac-
ture), are situated about 700 and 1000 m away from the monitoring
well, respectively. Note that the true event locations have a some-
what irregular geometry; i.e., they are not perfectly coplanar. For
illustration purposes, we assume that the velocity in each layer is
known approximately up to the same multiplicative factor that is
uniformly distributed between −5% and 5%.
We assume that direct arrival times from all events are picked with

errors that are normal with zero mean and standard deviation 1 ms.
We do not use correlation lag times in this example to demonstrate
that joint location, even when acting only on time picks, greatly re-
duces the impact of velocity uncertainty on event locations. Note that
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traveltimes in this setup are completely insensitive to the azimuth of
the event locations. We therefore only attempt to reconstruct the dis-
tance from the receiver array to the event locations and the event
depths.

Event locations

Figure 2a shows the receivers placed at depths from 1700 to
2200 m. The blue ellipses are 95% confidence regions for individual
events; they are constructed from the computed posterior densities
of individual event locations. The shape and size of the ellipse is
controlled by signal noise, aperture geometry, as well as velocity
uncertainty. These ellipses, however, do not capture the statistical
dependence among the locations of different events induced by the
velocity uncertainty.
Event location uncertainty obtained by jointly locating events is

hard to directly visualize because it involves a multidimensional
correlation matrix. It is still possible to see the manifestation of this
uncertainty if we compute the distributions of functions of event
locations, e.g., fracture height or fracture spacing.

Estimating fracture characteristics

Let us first pick events that came from the same fracture F1 and
view the difference between the maximal and minimal depths of the
events as a simple proxy for the fracture height. Given the joint dis-
tribution of the event locations, we can compute the distribution of the
fracture height. Toward that end, we generate a sample from the joint
distribution and compute the difference between the maximal depth
and the minimal depth of the events from the same fracture; i.e.,

hðF1Þ ¼ max
s∈F1

sz −min
s∈F1

sz. (15)

Figure 2b shows in blue the resulting distribution of the fracture
height calculated using the proposed joint location method. We then
emulate the conventional individual event location by computing,
from the joint distribution, the marginal distributions for individual

events. From these distributions, we individually sample each event
and compute the fracture height as spelled out in equation 15. The
resulting histogram of fracture height calculated from the individu-
ally located events is displayed in Figure 2b in red. We can see that
by jointly locating microseismic events, we estimate the fracture
height much more precisely because the effect of the velocity un-
certainty is significantly reduced by properly accounting for the re-
sulting correlation among different events. We illustrate this effect
by providing a simple quantitative measure e, which is the ratio of
the standard deviation computed from the individual location and
that computed from joint location.
We note, as a word of caution, that joint event location does not

always lead to smaller uncertainty in the quantity of interest. What
joint location does here is mitigate errors in the estimated uncer-
tainty, which come about in conventional individual location when
different event locations share the same source of uncertainty.
Consider now pairs of events, one from each fracture, s1 ∈ F1;

s2 ∈ F2. The minimal distance among such two events can be
viewed as a simple proxy for the fracture spacing:

lðF1; F2Þ ¼ min
s1∈F1;s2∈F2

ks1 − s2k: (16)

We compare the minimal distance between the two events from the
two fractures, computed from the joint distribution, and the distance
estimated just from the marginal distributions of the individual event
locations. The resulting histograms for the joint and individual event
location are shown in Figure 2c. Joint event location again produces a
better estimate of the fracture spacing than individual location does,
by correctly handling the correlation among different events induced
by velocity uncertainty along shared paths.

Effect of aperture position

Correlation among event locations induced by velocity uncer-
tainty in the model depends on several factors, array location and
geometry being among the most important. Figure 3a shows an ex-
periment identical to the one considered previously, but with the

receiver array shifted up by 400 m. We see that
when the array is above the events, the resulting
ray geometry ensures that velocity uncertainty pri-
marily affects reconstructed depths of the events.
Consequently, we expect to see the effect of joint
event location to be manifested primarily in esti-
mating quantities that depend on event depths.
Figure 3b shows a big improvement in estimating
the fracture height. The correlation among the
horizontal coordinates of the event locations in-
duced by the velocity uncertainty in this geometry
is not so significant, so the improvement in esti-
mating fracture spacing from using joint event
location is modest as shown in Figure 3c.
When the array is lowered to encompass the

depth of the events, as shown in Figure 4a, veloc-
ity uncertainty affects the horizontal coordinates
of the events more than their depths. Conse-
quently, joint event location improves the estimate
of the fracture spacing (Figure 4c), and it has little
effect on the estimate of the fracture height
(Figure 4b).
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Figure 1. A numerical setup with seven layers, two fractures (each represented by a sep-
arate set of events), and 16 borehole receivers located at depths from 1700 to 2200 m.
(a) The full 3D setup and (b) the same setup is shown in 2D offset from well-depth
domain.

KS54 Poliannikov et al.

D
ow

nl
oa

de
d 

09
/1

2/
15

 to
 1

74
.1

16
.9

.1
89

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



–200 0
2800

2600

2400

2200

2000

1800

1600

1400

1200

a)

b)

c)

200 400
Offset (m)

D
ep

th
 (

m
)

600 800 1000 1200

Uncertainty ellipses

60 70 80 90 100 110 120 130 140
0

0.02

0.04

0.06

0.08

0.1

0.12
Fracture height (e = 141%)

Height (m)

P
ro

ba
bi

lit
y

Joint
Classical

180 190 200 210 220 230 240
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Fracture spacing (e = 186%)

Spacing (m)

P
ro

ba
bi

lit
y

Joint
Classical

Figure 2. (a) Blue ellipses show 95% confidence regions for individ-
ual events. The histogram of estimated fracture spacing, lðF1; F2Þ ¼
210 m; (b) fracture height, hðF1Þ ¼ 110 m; and (c) using the joint
and individual location. The ratio of the standard deviation computed
from individual location and that computed from joint location e is
provided. The velocity uncertainty is 5%, and time picks are Gaus-
sian with standard deviation of 1 ms.
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Figure 3. A repeat of the experiment of Figure 2, but with the
receiver array shifted up by 400 m.
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Velocity uncertainty versus signal noise

We have shown in the examples above that joint event location is
superior to individual location because it correctly accounts for the
correlation among event locations induced by velocity uncertainty.
Joint event location is particularly effective for mitigating the im-
pact of velocity uncertainty on event-location error in the direction
of the wave energy connecting two events. This effect is illustrated
in the numerical experiment described in Figure 5. Individual loca-
tion inherently ignores the correlation among event locations and
overestimates location uncertainty when velocity uncertainty is the
dominant cause of randomness in the problem. When the dominant
factor is uncorrelated signal noise, the correlation among different
event locations is weak, and the difference between joint and indi-
vidual location is less prominent.
We illustrate these statements with a series of numerical experi-

ments. Two events are placed in a homogeneous medium, and a
vertical array of receivers is positioned nearby as shown in Figure 5.
We jointly locate the two events for different levels of velocity un-
certainty and different signal noise. Results are shown in Figure 6.
Velocity uncertainty increases from top to bottom, and signal noise
increases from left to right.
The two extreme cases are shown in the bottom left, in which the

velocity uncertainty is the largest but the signal noise is relatively
small, and the top right, in which the velocity uncertainty is the
smallest but the signal noise is large. Other panels show intermedi-
ate cases. We display the distribution of the distance among the two
event locations; this distance may serve as a proxy for a fracture
spacing estimated from a borehole array or as a proxy for fracture
height estimated from a surface array (after rotating the model 90°
clockwise).
When the velocity uncertainty is the dominant factor (bottom

left), joint event location leads to much smaller uncertainty in the
estimate of the distance among the two events. When the signal
noise is dominant (top right), the difference among the results of
joint and individual location is less pronounced. This illustrates that
estimates obtained from joint location are superior to estimates
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obtained from individual location when velocity uncertainty is dom-
inant over signal noise. Independence of event locations, implicitly
assumed by individual location, ignores information about the cor-
relation among event locations induced by velocity uncertainty, and
hence leads to larger uncertainties in the location estimates.

SUMMARY WORKFLOW

In this section, we summarize our method and highlight impor-
tant differences between our method and other techniques with the
help of a workflow. We assume that microseismic data are collected
in the field. The goal is to characterize locations of all recorded
events.

Prior distribution

A prior distribution of the events represents our knowledge of the
event locations before microseismic data have been processed. It
may be informed by well geometry, location of perforation shots,
etc. If some event locations are assumed known (master events)
s ¼ s0, then the prior will contain delta functions δðs − s0Þ. An un-
informed prior can be obtained by taking a Gaussian distribution
with very large variances. An informative/restrictive prior will have
considerable effect on location results. The proposed methodology
cannot validate priors, but their effect on the reconstructed locations
can be studied by varying them.

Velocity model

We describe a velocity model by a numerical
sampler from a probability distribution pðVÞ.
An example pðVÞ might be a distribution of
values of velocity for a particular layer. If the
velocity model V ¼ V0 is assumed known, then
pðVÞ ¼ δðV − V0Þ. It is common in literature to
assume that the velocity model is known. As with
the location priors, location analysis cannot
validate or rule out velocity priors unless they
lead to obviously unphysical results. It is usually
understood that the assumed velocity model con-
tains uncertainty. We argue that when tomogra-
phy is performed, this uncertainty should be
quantified and used as input in subsequent analy-
sis. It is possible in principle to invert for micro-
seismic event locations and the velocity model
simultaneously, but the resulting locations and
velocity model are bound to have uncertainties
and trade-offs that should be quantified by a joint
distribution.

Arrival times and lags

The recorded data are processed, and P and/or
S arrival times of each event are estimated along
with their uncertainties. There is no requirement
to detect P and S arrival for each recorded event.
However, it is required that the recorded phases
can be modeled using the available velocity
model. For example, if body waves are recorded,
then body waves (and not head waves) should

be modeled. We can also estimate time lags, such as S − P, or
lags among similar phases of different events as used in double-
difference or interferometry, by either subtracting traveltimes or
crosscorrelating waveforms. Care must be taken to avoid double
counting data. For example, if P and S arrivals are included in
the data, then S − P cannot be included. Formally, this issue is re-
solved by including an assumed correlation structure of the data into
the likelihood function. Beyond using this correlation matrix, there
is no weighing of data prior to calculating the posterior distribution
of event locations.

Calculating the posterior

The likelihood function is given by equation 4 or 7, and it along
with the prior can be computed for any set of event locations and
any velocity model. The Gaussian approximation to the posterior
distribution of the event location is calculated using equations 9
and 10 (or by using a sampler if the Gaussian approximation is in-
appropriate). The application to just a single event would reduce our
method to conventional individual location.

Computing fracture properties

Some fracture properties, such as height, spacing, etc, can be ap-
proximated as functions of event locations. There is no predefined
function for each quantity of interest, and the user is free to design
any appropriate function. The distribution of such a quantity, in-
cluding its mean and standard deviation, can be computed from the
joint distribution.
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Figure 6. A comparison of the distributions of the distance among the two events shown
in Figure 5 obtained using the individual (blue) and joint (red) location. Each panel
corresponds to a different choice of velocity uncertainty and signal noise. The horizontal
axis is the fracture distance, and the vertical axis is the probability density function
(PDF) value. A wider curve means more uncertainty.
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CONCLUSIONS

In this paper, we have proposed a new method for simultaneously
locating multiple seismic events in the presence of an uncertain veloc-
ity model. This method includes absolute as well as relative event
locations, without requiring that any reference or master events be
known. The method uses any available kinematic data, such as P or
S traveltimes or correlation lags, without artificial constraints such as
the availability of P and S arrivals for the same event.
Event locations always carry uncertainty induced by several fac-

tors such as signal noise, location and geometry of the array aperture,
and, most importantly in many applications, uncertainty in the veloc-
ity model. Velocity uncertainty induces correlation in traveltimes
from the event location to the receiver array, and hence in event
locations. Joint location captures this correlation by simultaneously
registering all event locations in each sampled velocity model.
In many applications, the model geometry is such that raypaths

from events to receivers largely overlap, allowing the possibility of
shared-path cancellation. In this case, the effect of the velocity un-
certainty along shared paths is mitigated resulting in better relative
location. The proposed approach captures positive aspects of dou-
ble-difference and interferometry that also use this effect, without
requiring the differencing of traveltimes.
Joint location does not guarantee smaller uncertainty. It provides a

more accurate estimator of event locations and their associated un-
certainty by capturing the entire covariance structure over all the
events. We visualize the effect of joint location uncertainty through
its impact on functionals of event locations, such as fracture height or
spacing. This impact can be visualized with simple 1D histograms.
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APPENDIX A

INTEGRATING OVER ORIGIN TIMES

The matrix A, vector B, and scalar C in equation 7 are defined as
follows:

A¼ALþAP; B¼BLþBP; and C¼CLþCP;

in which the right sides are contributions of the likelihood function
and prior. The expressions for the contributions from the likelihood
function are as follows:

AL
i;i 0 ¼

X
α;j

1

σ2α;i;j
þ

X
α;i 0 0<i;j

1

ζ2α;i 0 0;i;j
þ

X
α;i<i 0 0;j

1

ζ2α;i 0 0;i;j
; i ¼ i 0 0;

AL
i;i 0 ¼ −2

X
α;j

1

ζ2α;i;i 0 0;j
; i < i 0 0;

AL
i;i 0 ¼ 0; i > i 0 0; (A-1)

BL
i ¼

X
α;j

T̂α;i;j − Tαðsi; rjjVÞ
σ2α;i;j

þ
X

α;i 0<i;j

τ̂α;i 0;i;j − ταðsi 0 ; si; rjjVÞ
ζ2α;i 0;i;j

−
X

α;i<i 0;j

τ̂α;i;i 0;j − ταðsi; si 0 ; rjjVÞ
ζ2α;i;i 0;j

; (A-2)

CL ¼ −
1

2

X
α;i;j

ðT̂α;i;j − Tαðsi; rjjVÞÞ2
σ2α;i;j

−
X

α;i<i 0;j

ðτ̂α;i;i 0;j − ταðsi; si 0 ; rjjVÞÞ2
ζ2α;i;i 0;j

: (A-3)

The contributions from the priors are written as

AP ¼ M22;

BP ¼ −
1

2
½ðs − μsÞ�ðM12 þM�

21Þ − μ�
T
∘ ðM22 þM�

22Þ�;

CP ¼ −
1

2
½ðs − μsÞ�M11ðs − μsÞ − μ�

T
∘ M21ðs − μsÞ

− ðs − μsÞM12μT
∘ þ μ�

T
∘ M22μT

∘ �; (A-4)

where we put by definition

μ ¼
� μs

μ
T
∘

�
and Σ−1 ¼

�
M11 M12

M21 M22

�
:

APPENDIX B

VELOCITY MARGINALIZATION

In this section, we derive the exact formula for a velocity-
independent posterior distribution of the event location and discuss
a natural and often useful approximation to the exact solution. We
use the symbols T̂, V, s, and T

∘
to refer to the traveltime data, the

velocity model, the event locations, and the event origin times. As-
sume we have a proper likelihood function pðT̂js;T∘ ; VÞ and priors
on the velocity and event location pðVÞ and pðsÞ. The velocity prior
does not include information from T̂. The posterior on s and V is
then given by

pðs;T
∘
; VjT̂Þ ¼ pðT̂js;T

∘
; VÞpðs;T

∘
ÞpðVÞ

pðT̂Þ ; (B-1)

where
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pðT̂Þ ¼
ZZZ

pðT̂js;T
∘
; VÞpðs;T

∘
ÞpðVÞ ds dT

∘
dV: (B-2)

Information on s and T
∘
can be found from the joint ðs;T

∘
; VÞ-

posterior through marginalization:

pðs;T
∘
jT̂Þ ¼

Z
pðs;T

∘
; VjT̂ÞdV

¼
Z

pðT̂js;T
∘
; VÞpðs;T

∘
ÞpðVÞ

pðT̂Þ dV

¼ EV

�
pðT̂js;T

∘
; VÞpðs;T

∘
Þ

pðT̂Þ

�

¼ 1

pðT̂ÞEV ½pðT̂js;T
∘
; VÞpðs;T

∘
Þ�: (B-3)

Information on swithout the origin times T
∘
is then found through an

additional integration:

pðsjT̂Þ ¼ 1

pðT̂ÞEV

�Z
pðT̂js;T

∘
; VÞpðs;T

∘
Þ dT

∘
�
; (B-4)

in which the integral inside the expectation is evaluated just like in
equation 7.
The following algorithm of computing the posterior distribution

of the event locations directly follows from equation B-3:

1) Given observed traveltime data T̂ for each randomly sampled
velocity model V, compute the likelihood function pðT̂js;T

∘
; VÞ.

2) Multiply the likelihood function by the initial prior pðs;T
∘
Þ.

3) Repeat steps 1–2 for other velocity model samples V ∈ V and
sum the PDF products, until the convergence of the sum is de-
tected. This can be computationally expensive if the family of
admissible velocities V is very large.

4) Normalize this sum so that it integrates to one over s and T
∘
, thus

effectively dividing by pðT̂Þ.
Normalizing the posterior by pðT̂Þ is impractical for a large num-

ber of events. However, we can form the unnormalized joint pos-
terior using such methods as Monte Carlo Markov Chains, and
hence can compute statistics of this distribution of any function
of it.

Averaging velocity-dependent posteriors

Assume in addition to what is stated above that the observed data
T̂ is statistically independent of the velocity model V; i.e.,

pðT̂jVÞ ¼ pðT̂Þ or equivalently pðVjT̂Þ ¼ pðVÞ:
(B-5)

Note that all probabilities in equation B-5 are integrated over all
possible event locations s.
The assumption in equation B-5 means that no velocity model

can be deemed more or less likely based on the observed traveltimes
alone, without any knowledge of the event. It holds, for example, in
a 1D case due to a trade-off between the event location and the

velocity. In more practical terms, it is assumed that no additional
characterization of the velocity model by tomography using micro-
seismic data is possible. This may be the case when the velocity
model was estimated using multiple perforation shots with known
locations and high signal-to-noise ratios. Induced microseismicity
then may not provide enough additional illumination of the model
to allow a better estimate of the velocity.
From equation A-4, we obtain

pðs;T
∘
jT̂Þ ¼ EV

�
pðT̂js;T

∘
; VÞpðs;T

∘
Þ

pðT̂Þ

�

¼ EV

�
pðT̂js;T

∘
; VÞpðs;T

∘
Þ

pðT̂jVÞ

�

¼ EV

�
pðT̂; s;T

∘
; VÞpðs;T

∘
ÞpðVÞ

pðs;T
∘
; VÞpðT̂; VÞ

�

¼ EV

�
pðT̂; s;T

∘
; VÞ

pðT̂; VÞ

�

¼ EV ½pðs;T
∘
jT̂; VÞ�: (B-6)

We have shown that if the condition in equation B-5 is satisfied, then
the unconditional posterior distribution of pðs;T∘ jT̂Þ can be obtained
by simply averaging velocity-dependent posteriors pðs;T

∘
jT̂; VÞ over

different velocity models V. Estimating uncertainty in this way is
quite common; however, it is only an approximation to the true un-
certainty that gains nothing in computational speed. It should there-
fore be summarily avoided.
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