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SUMMARY

We study the effect of the uncertainty in the induced micro-

seismic event locations and origin times on the inverted fluid

pressure diffusivity. We use a probabilistic physical model

that directly ties fluid pressure in the subsurface during the in-

jection to observations of induced microseismic events at the

monitoring receiver array to track the propagation of uncer-

tainty in the forward model and inversion. We use this model

to invert for fluid pressure during injection from synthetically

modeled noisy travel times and an uncertain velocity model,

and to quantify the uncertainty of this inversion. Examples

presented provide evidence that reliable inversion of fluid flow

parameters from observed microseismic data with uncertainty

quantification is possible.

INTRODUCTION

Hydraulic fracturing is the primary tool to increase productiv-

ity of unconventional reservoirs (Jones and Britt, 2009). De-

spite its pervasive use, hydraulic fracturing is often inefficient

due to the lack of comprehensive diagnostics to characterize

the fracture network created. A better understanding of the re-

lationship between the fluid flow during the injection and the

observed microseismic data would increase the value of micro-

seismic monitoring and likely lead to more efficient fracturing

operations.

Poliannikov et al. (2015) have developed a probabilistic model

that ties fluid pressure during injection to observed microseis-

micity. This model uses a Bayesian formulation that accounts

for the uncertainties associated with rock cohesion, rock fric-

tion, and the maximum and minimum stresses of the forma-

tion, which are dominant factors controlling induced rock fail-

ure and the associated microseismicity. Their analysis can be

used to predict general patterns of microseismicity induced by

the injected fluid, and to invert for the pressure diffusivity of

the subsurface from the induced microseismicity. However, in

their numerical examples observations of microseismic events

and origin times were assumed to be known or recovered with-

out errors.

In this paper, we study the effect of uncertainty in estimated

microseismic events and origin times on the quality of inver-

sion of pressure diffusivity. Because event locations are es-

timated by ray-tracing using an assumed velocity model and

comparing predicted arrival times with the recorded travel-

time data, the effect of the velocity uncertainty on the un-

certainty in the event locations and origin times is quite pro-

nounced. A natural question then becomes: Will the uncer-

tainty in the velocity model render it impossible to use ob-

served microseismicity to draw inferences about fluid flow in

the subsurface?

We present evidence to show that despite the presence of noise

in the data and velocity uncertainty, we can under favorable

circumstances obtain reliable estimates of the parameters con-

trolling fluid pressure during the injection.

EFFECTIVE-DIFFUSION FLOW

We consider a two-dimensional radially symmetric medium

around the injection point (Figure 1) (Shapiro et al., 2005).

We model the fluid pressure in the formation as an effective

(upscaled) diffusion, which is a good model for a variety of

field settings. Even when the rock matrix is virtually imperme-

able, fluid pressure may still diffuse at a larger scale through

many connected fractures. The upscaled effective diffusivity

accounts for possible fractures and fracture networks on the

large scale (Shapiro et al., 2000).

Figure 1: Our model is a radially symmetric medium that is

centered on the point of injection.

Denoting by r the radial distance from the injection point, we

assume that fluid is injected into a medium with a non-homogeneous

isotropic diffusivity, α(r), at the rate, R(r, t) as shown in Fig-

ure 2.

The pressure field (above the initial background level) p(r, t) at

distance r and time t is governed by the initial-value boundary-

value problem (Shapiro et al., 2002, 2005):
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∂ p(r, t)

∂ t
= ∇ · [α(r)∇p(r, t)]+R(r, t)

p(r,0) = 0

∂

∂ r
p(0, t) = 0, p(∞, t) = 0.

(1)
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Bayesian inversion of flow from noisy microseismic data

Figure 2: Injection rate at the location r = 0; this is the source

term in Equation 1. In subsequent examples, As = 1 and ts = 1.

As a result of the injection, the fluid pressure within the medium,

p(r, t), increases from t = 0 until it reaches its maximum value

at some time tmax(r | α)≥ ts, which depends on both the loca-

tion and the diffusivity, and then drops and decays to zero as

t → ∞ as shown in Figure 3. Knowing the maximum pressure

at any given location enables us to determine the likelihood of

rock fracture. To find tmax(r | α), we numerically solve for the

extremum of the solution to the diffusion equation:

∂

∂ t
p(r, t | α)

∣

∣

∣

∣

t=tmax(r|α)
= 0. (2)

The maximum pressure, pmax(r | α), attained at a distance r

is calculated by plugging tmax(r | α) into the solution to Equa-

tion 1, i.e.,

pmax(r | α)≡ p(r, tmax(r | α) | α). (3)

Figure 3: Sample pressure profiles that are solutions to Equa-

tion 1, for a fixed diffusivity, α(r)≡ 1, and different locations,

r.

ROCK FAILURE MODEL BACKGROUND

Pressure at rock failure

Following Poliannikov et al. (2015), we characterize the phys-

ical properties of the subsuface by a set of four model parame-

ters. At each distance from the injection point, ri, the medium

can be described by four parameters that control rock failure:

mi = {σc(i),κ(i),σ1(i),σ3(i)}, (4)

where σc is the rock cohesion, κ is the rock friction, σ1 is the

maximum principal stress, and σ3 is the minimum principal

stress (Ottosen and Ristinmaa, 2005). Here we will assume

that the distances {ri} are chosen such that all four parameters

at different locations are statistically independent.

Time of failure

According to the classical Mohr-Coulomb theory (von Terzaghi,

1943), increasing fluid pressure reduces the effective stress

and, upon reaching a critical level, causes failure. This cor-

responds to the Mohr circle touching the Coulomb failure en-

velope at one point (Figure 4). The pressure level that is nec-

essary to cause a rock failure at distance ri will be called the

pressure at failure and denoted pfail(i).

Figure 4: Pressure, p, rises until it reaches the level p = pfail

when Mohr’s circle (blue) touches the Coulomb failure enve-

lope (red) and a failure occurs.

If the four parameters, {σc,κ,σ1,σ3}, of the model and fluid

pressure are known exactly, then rock failure is directly linked

to pore pressure, and hence to diffusivity (Poliannikov et al.,

2015). When the four parameters carry uncertainty and hence

are described by probability distributions, a failure may or may

not occur depending on a particular realization of these param-

eters (Figure 5).

This framework allows us to forecast a probability distribu-

tion for microseismic events given the uncertain parameters

{σc,κ,σ1,σ3} in the subsurface. For each distance ri across

some a priori chosen grid, we can determine the probability of

a failure, Pfail(ri | α), at the location, ri, and, if applicable, the

probability distribution of its time, ftfail(ri|α)(t).

The probability Pfail(ri | α) is specific to each given distance

and diffusivity. It is computed as follows:

Pfail(ri | α) = Fpfail(i) (pmax(ri | α)) , (5)

where P [·] denotes probability, and Fpfail(i)(p)≡P [pfail(i)≤ p] =
´ p
−∞

fpfail(i)(p′) dp′ is the cumulative distribution function for

pfail(i), the pressure at failure that can be easily computed from

assumed distributions of the model parameters mi.
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Bayesian inversion of flow from noisy microseismic data

Figure 5: (left) A failure occurs if the pressure, p(r, t), at a

given location, r, reaches the required level, pfail. The maxi-

mum pressure then by definition equals or exceeds this level.

(right) If the pressure, p(r, t), never reaches the level, pfail,

then no failure occurs at this location.

The time of failure, tfail(ri | α), if the failure occurs, is a ran-

dom variable whose distribution is described by a probability

density function, ftfail(ri|α)(t) (Poliannikov et al., 2015):

ftfail(ri|α)(t) =
fpfail(i) (p(ri, t | α)) ∂

∂ t
p(ri, t | α)

Fpfail(i) (pmax(ri | α))
,

(6)

when t ∈ [0, tmax(ri |α)], and zero otherwise. In practice, many

microseismic events are observed after tmax(ri | α), but since

our focus here is on microseismic triggering fronts, these later

events are not considered.

Figure 6 shows an example of a simulated induced microseis-

micity. There we assume that all parameters except the mini-

mum stress σ3 are known. The minimum stress is assumed to

be known up to an error of ±5%.

PROBABILISTIC INVERSION FROM UNCERTAIN EVENT

LOCATIONS

Consider first the problem of inverting for the diffusivity, α ,

from perfectly known event locations and origin times that we

summarily denote by s. Poliannikov et al. (2015) show that the

posterior distribution of the diffusivity is given by

f (α | s) ∝
Nevents
∏

i=1
ftfail(ri|α)(ti)Pfail(ri | α) (7)

where we have assumed uninformed (flat) prior distribution

of the diffusivity. In Figure 7 we show the posterior density

function of the diffusivity, α , given the microseismicity shown

in Figure 6.

In field applications, microseismic event locations and origin

times are not observed directly. Instead they are estimated with

some uncertainty from recorded microseismic data (Michaud et al.,

2004; Bennett et al., 2005; Huang et al., 2006; Poliannikov et al.,

2013, 2014). Uncertainty in the estimated event locations and

origin times depends on several factors, receiver array geome-

try, velocity uncertainty and signal noise being among the most

Figure 6: A simulated realization of the induced microseis-

micity caused by an injection at the point (0,2). Each micro-

seismic event is recorded by a borehole receiver array located

nearby (green triangles).

Figure 7: The posterior distribution of the diffusivity, α , given

the observed microseismicity in Figure 6, the flat (completely

uninformed) prior, and assumptions about the physical param-

eters of the medium. The uncertainty in the α is due to the

uncertainty in the minimum stress σ3. Because the event loca-

tions and origin times are assumed known, velocity uncertainty

has no effect on the posterior of α .

important. Here we demonstrate that in some cases the diffu-

sivity can be recovered from noisy arrival times.

First, denote by T the observed travel-time data, α the un-

known diffusivity, and s the true microseismic event locations

and origin times. Then we have (Poliannikov et al., 2015):

f (α | T ) =

ˆ

f (s | T ) f (α | s)ds, (8)

where f (s | T ) is the joint probability density function of event

locations and times, given observed travel times (Poliannikov et al.,

2013, 2014), and f (α | s) is the posterior of diffusivity given
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Bayesian inversion of flow from noisy microseismic data

microseismic events as computed above.

Figure 8 shows the result of the inversion for the pressure dif-

fusivity using the noisy travel times from the microseismic

events shown in Figure 6 and a homogeneous velocity model

with uncertainty of ±5%. The signal noise is assumed to be

independent Gaussian with a standard deviation of σ = 10−3.

Figure 8: The posterior distribution of the diffusivity, α , given

observed noisy travel times and an uncertain velocity model.

By comparing the posterior distributions in Figures 7 and 8,

we can see that the uncertainty has not increased dramatically.

This result, of course, is obtained for a specific experiment and

is not representative of all possible models of fluid flow, rock

fracture, and all monitoring geometries. However, it is impor-

tant to consider reasons for relatively good inversion results in

this particular case.

Equation 8 has two key ingredients: a joint probability distri-

bution of locations and times of induced microseismic events

and a posterior distribution of the diffusivity given a particular

realization of event locations and times. Both ingredients help

control the uncertainty in the inverted diffusivity.

It is well-known that locating microseismic events one-by-one

involves a trade-off between an (uncertain) velocity and the

event location and origin time and may lead to a poorly con-

strained event. The joint (simultaneous) location of multiple

events at the same time is a much better constrained problem.

The relative location of one event with respect to others is less

sensitive to velocity perturbations, and the absolute locations

of all events are often highly correlated (Waldhauser and Ellsworth,

2000; Zhang and Thurber, 2003; Poliannikov et al., 2011, 2013).

Large velocity deviations, for example, are ruled out by the

posterior because they are incompatible with the observed ar-

rival times from all recorded microseismic events. This phe-

nomenon is widely used in velocity estimation using micro-

seismic events. Here we do not need to explicitly estimate the

velocity model because only good velocity models contribute

significantly to the posterior.

Consider now a family of jointly located microseismic events.

They can be thought of as random samples of all event loca-

tions and origin times such that each sample is consistent with

the observed travel-time data and prior assumptions about the

velocity uncertainty and signal noise. According to the flow

model and rock failure mechanism described above, micro-

seismic events must propagate away from the known injection

point isotropically in a diffusive fashion with the square-root of

the origin time being proportional to the distance of the event

from the injection point. Some realizations of the event loca-

tions and event origin times will be inconsistent with the rock

failure model, i.e., highly unlikely, for any choice of the flow

diffusivity. The contributions of these microseismicity realiza-

tions to the diffusivity posterior inside Equation 8 will be very

small.

CONCLUSIONS

In this paper we presented a model physically tying together

fluid pressure during injection to observed uncertain direct ar-

rival times of the induced microseismic events. This physical

model gave rise to a probabilistic model that could be used for

forward predictions and inversions. We inverted for the effec-

tive diffusivity of the fracture system during injection from the

observed travel times using an uncertain velocity model and

prior assumptions about signal noise and rock physics param-

eters in the subsurface. We used a simple numerical example

to demonstrate that the velocity uncertainty being one of the

largest factors of uncertainty in earthquake location might have

a limited effect on the inverted diffusivity if the inversion was

performed optimally.
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