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SUMMARY

We study the problem of uncertainty quantification for mi-
grated images. A traditional migrated image contains deter-
ministic reconstructions of subsurface structures. However,
the input parameters used in migration, such as reflection
data and a velocity model, are inherently uncertain. This
uncertainty is carried through to the migrated images. We
use Bayesian analysis to quantify the uncertainty of migrated
structures by constructing a joint statistical distribution of the
structures in question. From this distribution we can deduce
the uncertainty in absolute positions of the structures, ora rel-
ative position of one structure with respect to another. In some
cases the relative position has a much smaller uncertainty than
the absolute position.

INTRODUCTION

Seismic depth-migration is a general process by which seis-
mic events in recorded data are moved from time to depth co-
ordinates (Yilmaz, 2001). This process traditionally produces
a single image. Any subsequent interpretation is based on this
image as if it is an accurate representation of the subsurface. In
order to go from time to space, any implementation of depth
migration requires a velocity model. This velocity model is
obtained from prior surveys and analysis, and it is assumed
given for the purpose of migration. Obtaining an accurate ve-
locity model in practice is a non-trivial problem. The final
model is an approximation to the true model that can be asso-
ciated with some uncertainty. This uncertainty propagatesto
the migrated image as a whole, and to the locations of individ-
ual horizons in particular (Grubb et al., 2001; Pon and Lines,
2005; Glogovsky et al., 2009; Osypov et al., 2011). The Bayesian
uncertainty analysis that we advocate in this paper recovers
the absolute and relative positions of seismic horizons along
with their associated uncertainty. It follows a similar analysis
of location uncertainty for seismic events (Poliannikov etal.,
2014). Given surface seismic reflection data, we construct a
joint posterior estimator of the locations of chosen horizons
that is a multidimensional probability distribution of discrete
points on the horizons. This probability distribution describes
the location of each horizon as well as the correlation between
the locations of different horizons. It is derived from a prior
probability of the horizon locations, and the likelihood func-
tion that describes the probability of observing a particular
dataset given fixed horizon locations. This likelihood function
is based on map demigration, which is analytic and therefore
fast. Our analysis shows that in some cases the location of one
structure relative to another can be known much better than the
absolute depth of individual structures, and this reduction of
uncertainty can be exactly quantified. This analysis is applica-
ble in many situations from redatuming below a complicated

near-surface to updating the model during monitoring-while-
drilling.

THEORY

Problem setup
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Figure 1: A numerical acoustic model with two reflectors, and
sources and receivers at the surface. The part of the medium
above the first reflector (z= 1 km) is uncertain in later exam-
ples. The velocity below the reflector z≥ 1 is assumed known.

We consider a simple acoustic model with two reflectors em-
bedded in it. The velocity model is uncertain. We model the
velocity uncertainty by assuming that the velocity,V, belongs
to a family of admissible velocity models,V The probability
distribution, p(V), determines the likelihood of any velocity
model from the family,V . Sources and receivers are located
at the surface as shown in Figure 1. For each source loca-
tion, we fire a shot and record a corresponding common-shot
gather. This common-shot gather can then be resorted, e.g.,
to common-offset gathers, and individual reflections can be
picked in the sorted gather. The problem is to describe the
location and shape of the reflectors along with the associated
uncertainty from those reflected events in the gathers. The cur-
rent discussion relies on the picking of event travel-timesand
migrates those picked times directly. This is, of course, not
ideal for a real data set. In that case, we would expand our
data in a suitable basis, e.g., curvelets or similar, and migrate
the time indices of these bases functions. This is a subject of
current work.

Map migration

For a 2D survey in a 3D space, each event in a common-
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Effect of velocity uncertainty on migrated reflectors

offset gather can be approximated with a collection of five-
tuples (xu,yu, tu, px

u, p
y
u), wherexu,yu are common-midpoint

coordinates,tu is the travel time, andpx
u = 1/2∂ tu/∂xu, p

y
u =

1/2∂ tu/∂yu are the horizontal slownesses of the un-migrated
reflection. For simplicity we will work in 2D, whereyu ≡ 0
and py

u ≡ 0, and the event in the data domain has the form
(xu, tu, px

u ≡ pu). All results, however, generalize directly to
3D. For a homogeneous isotropic medium with velocityV, the
travel time is governed by the double-square-root equation:

tu = 1
V

√
(xu−xm−h)2+

(
Vtm

2

)2

+ 1
V

√
(xu−xm+h)2+

(
Vtm

2

)2
.

(1)

Herexm is the coordinate of the reflection point, andtm is the
two-way migrated travel time. Defining the local dip of the
reflector, pm = 1/2∂ tm/∂xm, we obtain the migrated reflec-
tor coordinates(xm, tm, pm) Douma and de Hoop (2006) derive
an analytic relationship between the migrated reflector coordi-
nates(xm, tm, pm) and the specular reflection coordinates(xu, tu, pu).
It has the following form:

xm = xu−
(

Vtu
2

)2 Λu

h
(2)

tm = 2

(
t2
u

4
− h2

V2 +

(
VtuΛu

4h

)2(4h2

V2 − t2
u

))2

(3)

pm = 1
2 putu|Λu−1| |Λu+1|

×
(

t2
u
4 − h2

V2 +
(

VtuΛu
4h

)2(
4h2

V2 − t2
u

))− 1
2 , (4)

where

Λu =
1

2
√

2puh

√√√√Θu

(
1−
√

1− 64(puh)4

Θ2
u

)
(5)

Θu = t2
u +

(
2h
V

)4 1
t2
u
−2

(
2h
V

)2(
1− (V pu)

2
)
. (6)

The demigration equations describe the transformation back
from (xm, tm, pm) to (xu, tu, pu). Formulas for this transfor-
mation are given by Douma and de Hoop (2006) and are not
repeated here.

Bayesian uncertainty analysis

Forward model

If the velocity,V, is known and there is no noise in the data,
then the reflector can be represented in the depth domain as a
triplet (xm, tm, pm) or in the data domain as a triplet(xd, td, pd).
These two representations are related through the operators of
map migration,M , and map demigration,D :

(xd, td, pd)≡ ℓd
M→ ℓm ≡ (xm,zm, pm), (7)

and
(xm, tm, pm)≡ ℓm

D→ ℓd ≡ (xd,zd, pd). (8)

In practice, the velocity model is never known exactly, and the
recorded data is noisy. Velocity randomness and the noise in
the recordings make the travel time data random, and the prob-
lem becomes that of recovering the model for the subsurface
from those random observations. We solve this problem by
Bayesian inversion. The Bayesian framework is based on the
notion of the likelihood function. Consider a model that con-
sists of reflectors,(xm, tm, pm), encoded in the common-offset
space as well as an assumed model,V, and the offset,h. The
observed data is then written as

t̂d = td +nt , (9)

where(xd, td, pd) = D(xm, tm, pm | V,h). Here we explicitly
indicate the velocity and offset used in the demigration oper-
ator We assume that there is no noise in thexd component,
i.e., x̂d = xd, because the travel times are registered at fixed
receiver locations. The noisent is assumed to be a realiza-
tion of a zero-mean Gaussian process with some correlation
lengthℓ. If reflection times were picked independently at each
receiver, the correlation length would be zero:ℓ = 0. How-
ever, because in practice events are picked in the entire gather,
where the pick in any given trace depends on the signal con-
tent at neighboring traces, the correlation length is greater than
zero:ℓ > 0 The noisy slownessespd are estimated from ˆxd by
a finite-difference approximation.

Inversion in known velocity

Denote the likelihood function that describes possible observed
data and their probability as

p(x̂d, t̂d, p̂d | xm, tm, pm,h,V).

The Bayes’ formula yields the following inversion:

p(xm, tm, pm | x̂d, t̂d, p̂d,h,V)
∝ p(x̂d, t̂d, p̂d | xm, tm, pm,h,V)p(xm, tm, pm)

(10)

Equation 10 provides an exact expression for the posterior dis-
tribution of the model parameters. However, if each reflector is
approximated relatively finely, then the total number of model
parameters is very large. In order to simplify the computation
and the representation of the posterior distribution of thehori-
zon locations, we approximate it with a multi-variate Gaussian
distribution,

(xm, tm)∼ N
(
(x0

m, t
0
m),Σ

0
)
. (11)

Following standard Gaussian analysis, the mean,(x0
m, t

0
m), and

the covariance matrix,Σ0, of the joint Gaussian distribution are
found as follows. The mean is found by solving a constrained
maximization problem:

t0
m = argmaxp(x̂d, t̂d, p̂d | xm, tm, pm,h,V)p(xm, tm, pm) (12)

subject to the constraints

x̂d = xd,

p̂d = 1
2

∂ t̂d
∂xd

.
(13)

The local estimate of the covariance about the mean is given
by the inverse hessian of the logarithm of the function inside
the argmax in Equation 12 at its maximum point.

Page 3748SEG Denver 2014 Annual Meeting
DOI  http://dx.doi.org/10.1190/segam2014-1359.1© 2014 SEG

D
ow

nl
oa

de
d 

11
/2

8/
14

 to
 1

34
.1

53
.3

7.
12

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Effect of velocity uncertainty on migrated reflectors

Inversion in uncertain velocity

Equations 10 and 11 provide expressions for migrated reflec-
tor coordinates in a known velocity model for a fixed offset.
When the velocity is uncertain, we can integrate the product
of the likelihood function and the prior to obtain the velocity
independent posterior. We also integrate over all available off-
sets assuming the picking errors in each common-offset gather
are independent. We thus obtain

p(xm, tm, pm | x̂d, t̂d, p̂d,h,V)

∝ EV

ˆ

p(x̂d, t̂d, p̂d | xm, tm, pm,h,V)p(xm, tm, pm)dh

(14)

The formal expectation in Equation 14 can be approximated
with a mean over a sample from the velocity distribution. If the
family of admissible velocities,V , is large and multi-dimensional
then producing sample velocities from this distribution may
be a non-trivial problem. It could do be done, for example
through an exploration of velocity models that flatten angle
gathers to within a given tolerance. We will not address the
problem of velocity sampling in greater detail here. In the ex-
amples in the next section we will look at a simple illustration
for the proposed methodology, where the numerical compu-
tation of the expectation over different velocity models,V, is
easy.

NUMERICAL EXAMPLES

We illustrate the proposed methodology with simple numeri-
cal examples. The model is as described before with sources
and receivers at the surface and two reflectors in the subsurface
(Figure 1). The velocity is uncertain, and the recorded signals
are noisy. The noise in the signal leads to erroneous pickingof
the specular reflection events. The correlation length is taken
to be,ℓ = 1 km, and the standard deviation is 1 ms. We now
consider two cases of velocity uncertainty. In both cases the
velocity above the reflectors is uncertain, and the velocitybe-
low the first reflector is presumed known. This is a simplistic
model for a geology frequently encountered in Middle East,
where karsts and dunes sit on top of a layered cake of slowly
varying sediments. We do not model lateral variations in the
velocity model that are certainly very important in practice.

Precision of relative imaging

In the first example (Figure 2), the velocity estimate in the
“overburden” is unbiased but it has an uncertainty of±2%.
We compute the posterior distribution for both reflectors ac-
cording to Equation 14. In the left panel we plot in solid blue
the mean positions of each reflector computed from the poste-
rior distribution. We also compute the offset-dependent stan-
dard deviations,σ , of the depth of each reflector, and indicate
the boundaries of the 3σ intervals with dashed red lines. In the
right panel, we show the relative depth of the second reflector
with respect to the depth of the first reflector. A comparison of
the panels reveals a marked reduction in uncertainty in relative
depth compared to the absolute depth. The relative imaging
is more stable because much of the velocity uncertainty has
little effect on the relative depth. The relative depth primarily
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Figure 2: Left: Variations in the position of the migrated
reflectors when the overburden velocity is uncertain: V=
V0 + dV, where dV∼ Uniform[−2%,2%]. Blue lines denote
the estimated mean position, and the red dashed lines outline
the 3-standard-deviation region plotted with vertical exagger-
ation to show reflector shape. Right: The relative depth of the
second reflector with respect to the depth of the first one. The
effect of the velocity uncertainty is much smaller.

depends on the the difference of reflection times of both reflec-
tors. This travel time difference is not significantly affected by
the velocity variations in the overburden.

Accuracy of relative imaging

In the second example (Figure 3), we assume that the velocity
prior is biased. More specifically, let the velocity in the over-
burden above the first reflector be underestimated by a random
factor that is distributed uniformly between 1% and 5%. The
velocity between the reflectors is assumed to be known. As be-
fore, the left panel contains the results of migrating data in the
incorrect velocity. The depths of both reflectors are underes-
timated due to the low velocity used for migration. However,
the relative depth of the second reflector with respect to the
depth of the first reflector is once again recovered much better.

The reconstructed relative distance exhibits a small bias.The
primary reason for this is the relatively sparse discrete repre-
sentation of the horizons that fails to capture the curvature of
a synclinal horizon precisely. Additionally, errors in picking
with a particular picking method that deviate from the noise
model given in Equation 9 may also result in a bias. The small
error bars in the right panels of Figure 2 and 3 show that the
velocity-induced uncertainty has been mitigated. Other errors
in modeling still may and do affect the reconstructed depth of
the horizons.
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Effect of velocity uncertainty on migrated reflectors
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Figure 3: Same as Figure 2 but with dV∼
Uniform[−5%,−1%].

CONCLUSIONS

Seismic migration inherently relies on an available velocity
model. A good velocity model may not be available, and even
the best tomography result will yield an entire set of plausi-
ble velocity models. The resulting migrated image should in-
corporate the uncertainty of the parameters used to build the
image. We proposed a Bayesian framework to quantify un-
certainty in the migrated images. We considered the effect of
velocity uncertainty and the effect of the picking error. Prior
information about the velocity model and assumptions about
picking allowed us to construct a posterior estimate of the lo-
cations of migrated events. This estimate produced not justa
single location for each event but it captured the uncertainty
in those locations. In some geometries, such as surface seis-
mic and structures with relatively small deviations from hori-
zontal, ray-paths from sources and receivers to different struc-
tures largely overlap. This allows for possibility of shared-path
cancellation. The effect of the velocity uncertainty alongthe
shared path is limited, which results in better imaging of one
structure relative to another.
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