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Joint microseismic event location with uncertain velocity
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SUMMARY joint location estimator that is a multi-dimensional joitis-
tribution of all recorded events. This distribution contathe
We study the problem of the joint location of seismic evessts u  complete statistical description of the events includimjvid-
ing an array of receivers. We show that locating multiplesei  ual event locations as well as existing correlations betviee
mic events simultaneously is advantageous compared to thelocations of different events. It may then be used in a Bayesi
more traditional approaches of locating each event indepen sense as prior information in the location of a new event.
dently. Joint location, by design, includes estimating aceu-
tainty distribution on the absolute position of the eveRtam
this can be deduced the distribution on the relative positio
one event with respect to others. Many quantities of interes
such as fault sizes, fracture spacing or orientation, cadi-be
rectly estimated from the joint distribution of seismic pise
Event relocation methods usually update only the targeiteve . ; X S
while keeping the reference events fixed. Our joint approach eYe”tS in neighboring fragtures. Fracture size Is re_IaIetdel .
can be used to update the locations of all events simultane-d'St‘”’mCe between events in the same fracture. Having the joi

ously. The joint approach can also be used in a Bayesian senséqcat'_on distribution, WE can compute t_he entire stauad;m_hs-
as prior information in locating a new event. tribution or some statistics of any function of those evgliite

the mean fracture spacing.

In most situations, event location is not the final goal buea s
towards a more complete description of geophysical feature
such as fractures, faults, pressure fronts, etc. Physicaitg

ties such as fracture spacing or fault orientation can teriefl

from the estimated event locations. Fracture spacing,Xeor e
ample, can be thought of as the average distance between the

INTRODUCTION THEORY

Locating seismic events is an important problem both ingllob ~ Problem setup
seismology and in reservoir exploration. Applicationstast
problem vary in scale from earthquake characterizatioryto h
draulic fracture monitoring. Traditionally events are dted
individually, for example, from variants of Geiger's metho
by ray-tracing them from receiver locations using theipezs

tive arrival time and polarization estimates. Importaribin
mation that couples data from different events and thus ties
them together is ignored (Richards et al., 2006; Hulsey.et al Direct arrivals from all events are recorded at receivereloc
2009; Kummerow, 2010). tionsrj, and arrival timesT = {fa,i,j}, are picked. Here
a € {P,S...} denotes the recorded phase, {1,...,Ns} the
event number, angl € {1,...,N;} is the receiver number. In
addition to picking direct arrival times, we may also corre-

ConsiderNs seismic eventss = {s;,...,S,} originating in-
side a domair in the Earth model. We assume that the pos-
sibly heterogeneous seismic velocly,inside 7 is uncertain.
Mathematically we assume thétbelongs to some family of
admissible velocity modelg”. The probability distribution,
p(V), determines the likelihood of any given velocity model.

Event locations are usually understood in either absolute o

relative terms (Slunga et al., 1995). Absolute event |oceti

are defined globally with respect to a fixed coordinate system | . - . X .
. . . . ate arrivals from events andi’, and pick correlation lags,

Relative location is the location of an event relative toeoth -~ (Baii i}

events in the vicinity. Consider, in the context of hyrdefrae LI

monitoring, microseismic events from the same fractureelf We assume that the picked times and lags so obtained are noisy

move the fracture by moving all events in it a constant distan  j.e.,

in a specified direction, then the absolute locations of&hos . o 5

events will change. However, the relative location of avegi Taij=Ti+Ta (s:1 V) +4 (0’ UaM) @

event in this fracture with respect to all the rest will remtie - o o

same. The primary advantagFe) of relative location over absol T = 1~ T+ T (8,50, [V) .47 (O’ Zé“’-]) @

location is that it is less sensitive to the uncertaintieshie

velocity model that lie between the cluster of sources ard th

receiver array, since these uncertainties tend to repositie

cluster as a whole, with a much smaller impact on the relative Ta (8,80 V) =Ta (s,1 V) =Ta (s.rj V) (3)

locations within the cluster (Waldhauser and Ellswortl0@0 s the predicted lag between the direct arrivals from evéents

Zhang and Thurber, 2003; Poliannikov et al., 2011, 2013).  andi’, and.# (-, ) is the normal distribution. We will assume

that the noise in picked arrival times and lags is uncoreelat

whereT; is the unknown origin time of the evefTy (s.rj|V)
is the predicted travel time in the velocity modgl

The joint location that we advocate in this paper is a way o re

cover the absolute as well as relative positions of all réedr The problem is to estimate all event locatiaom the ob-
events. Given recorded arrival-time data we will construct  served data] andz.
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Joint location in a known velocity model

where the matriX is defined as follows:

First suppose that the velocity mod¥l, is known. The data A => 021 i=i

likelihood function, p(f,f | sﬁ',v), determines the proba- al a""l

bility of obseorving'f', t, given prescribed event locatioaand +a I,/Zil i Z,f i

origin timesT. Under the assumptions stated in the previous 1

section, the likelihood function has the form: +a E i gsii,,j

p(f,f|s,T7v) Ap =25 A i<
a,j a i’

. o 2
1 Toij—Ti—Ta(s,rj|V) A =0 i> i )
Oexp|—5 = W -
o|x (e |
b the vectorB is:
Taii— Ta (S.50,1j | V) Ta (s,rj|V)

1
3 2
a,i<i’,j

The poosterior distribution of the event locatiossand origin
times,T, given data is then obtained by Bayes’ rule:

p('i’,f | s,'i',V) p(s.,"l" |V)
//p('i’,f | s,'i',V) p(s.,"l" |V) dT ds
p(T’,f|s,1°’,V)

O .
//p('f’,f | s,'i',V) dT ds

Here we assume that all locations and origin times are gquall
likely, i.e.,

Laiij

p(s,'f’ |'T',f,V) =

®)

p (s'i" \V) = const (6)

If a prior distribution on reference event locations andyiori
times is available from a previous application of joint lbhza-
tion, the posterior can still be expressed in closed forrhigf t
prior is expressed as a multi-normal distribution. We do not
present these expressions here.

If we are interested just in the event locations without thie o
gin times, then we simply integrate the posterior distitut
given in Equation 5 over all origin time$,. We have

p(s|T,1,V)

)d'i’

The integral] (s), appearing in the numerator and denominator
of the right hand side of Equation 7 can be computed analyti-

cally. Indeed,
/p(ﬁf \ s,'T’,V) dt

1(s)
' lo, = .o o
/exp{—éT AT +B T+C} dT

O

exp[%B*Aflmc] : (8)
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N
St
i >] (4) B;

Zfa,i,j

: o2,
a.j

a,i,j

Toiij—Ta (S,8,1) V)

oD
a,i’<i,j Za iinj
f it i — T 0 ri |V
B Z a,iij U(S‘I S, ]‘ )’ (10)
a,i<i,j Za ii’j
and the scala is:
T —T ri|V))
c - __Z aij—Ta(s,r] )?
O'
ai,j ai,j
. 2
B Z (Ta,i,i',j —TIq (SaSHr] |V)) .
a,i<i’,j Za NN

Gaussian approximation of the joint distribution

While the posterior joint distribution of event locatioranche
written exactly, it may be difficult to use in practice. Thénjo
distribution is a function of Bs variables that needs to be com-
puted numerically, which, in turn, requires the evaluatifn
the integral in the denominator of Equation 7. While concep-
tually straightforward, this computation is numericallysty
whenNs becomes large. In order to simplify the computation
and representation of the distribution, we will approxientite
posterior distribution with a multi-variate normal digwition

/(s‘),zs) .

Following standard Gaussian analysis, the me3nand the
covariance matrixZs, of the normal distribution are found as
follows. The means?, is found by solving the maximization
problem

p(s|T,E,V) ~ (12)

0

s’ =arg nlax (s), (13)

and a local estimate of the covariance al®s given by

(Zgl) - d%logl (s)
mn

, 14
.l I (14)
wheresy, ands, span all 35 coordinates of all event locations.
Joint location in uncertain velocity model

Equations 7 and 12 provide expressions for the posterier dis
tribution given a known velocity model. When the velocity
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model is uncertain, i.e., it is sampled from a family of adsiis
ble velocity modelsy’, we can use the Total Probability The-
orem to write the velocity-independent form of the posterio

p(s|T,%) :/p(s| T,1,V) p(V)av (15)
v
In order to compute the velocity-independent distributinon

merically, we generatk velocity modelsv; from ¥ and com-
pute the conditional posterior distributions in parallehen

I -

L
Z (s|T.T.M). (16)

sTr
| L

Quantities of interest

Estimated locations of seismic events are not the final gbal o
seismic monitoring. Our interest is typically in geoloditea-
tures that the estimated seismic event locations can he&p to
veal (Michaud et al., 2004; Huang et al., 2006; Bennett et al.
2006). Assuming that most microseismic events originate in
fractures, clouds of microseismic events reveal the fractu
size, position, orientation, etc. Such quantities of ieséican

be written as functions of the estimated event locatidifs).
Becausesis a random vectorf,(s) becomes a random variable.
We can use probability theory to compute the distribution of
f(s) or estimate its statistics.

The statistics can be written analytically, e.g.,

Ef(s) = / £(s)p(s)ds, a7

or

Varf (s) = /‘(f(s) —Ef (s))zp(s) ds. (18)

Alternatively, if the joint distribution okis approximated with

a multi-variate Gaussian vector, then the entire distidioubf
f(s) can be computed numerically by sampling joint locations
and applying the functioff.

NUMERICAL EXAMPLE
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Figure 1: A numerical setup with two layers, two source
events, and ten surface receivers.

We illustrate the proposed methodology with a simple two-
dimensional numerical example. We consider a two-layeriumed
(Figure 1). The velocity in the top layer, dubbed “near-acef’,

is uncertain and has Gaussian distributignz- .4 (3000 30%) m/s.
The velocity in the bottom layek, ~ 4000 m/s is assumed
known.

Ten receivers are placed at the surface at offsets ranging fr
—1000 m to 1000 m. Two seismic events are located in the
bottom layer a{0,600) and(—300,1000 m. We assume that
direct travel times from both events are picked with errbe t
are normal with zero mean and standard deviatior & We

do not use additional correlation picks in this example oheor

to show the gain that the joint location brings. Using carvel
tion picks would improve our results even further.

Event locations
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Figure 2: The reconstructed events and their 95% error el-
lipses. Red dots denote the true event locations. Black dots
denote the estimated event locations

The four-dimensional joint distribution of the event ldoats

is approximated with a Gaussian according to Equations 13
and 14. Figure 2 shows the reconstructed event locations and
the 95% error ellipses. Notice that the error ellipses sasre
useful indicators of the error in the location of the indivéd
events. However, they do not contain any information about
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the correlation between those errors. The small value of the However, the depths of the two events are highly correlated.
standard deviation of the time picking erros= 104 s, is Consequently, the uncertainty of the distance betweeroihij
associated with depth uncertainties of less than 0.5 m. Thislocated events is very small (standard deviation is aroumgl. 2
indicates that the bulk of the location uncertainty is dughto By comparing these two histograms, we see that joint lonatio

velocity uncertainty in the overburden. provides an order of magnitude improvement in the distance
measurement.
| X1 71 X2 72
X1 1.00 0.09 -061 0.08
7 0.09 1.00 0.50 1.00 CONCLUSIONS
X2 | —0.61 0.50 1.00 0.48
Z 0.08 1.00 0.48 1.00 In this paper, we propose a framework for jointly locatingse
mic events in the presence of velocity uncertainty and $igna
Table 1: The correlation matrix of the joint distribution of the noise. This problem is pervasive in global seismology and on
two event locations, s; = (x1,2z1) and s, = (x2,2»). Observe the reservoir scale, e.g., in hydrofracture monitoringntJio-
the strong correlation between the depths of the two events. cation better reveals geological features such as fauftaor
tures. In a simple numerical example we see a reduction of the
Table 1 shows the correlation matrix of the joint vecioOb- error in estimated fracture size by approximately one oafler

serve the high correlation between the depths of the twatgven Magnitude.
This correlation is due to the fact that both events are ray-

traced through the same “near-surface”.
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Figure 3: The distribution of the distance between the two
eventsas computed fromthe joint distribution (red) and thetwo
marginal distributions for each event (blue). Because of high
correlation between the location errors, the distance between
the two events is very stable. When each event is localized
separately, the correlation islost, and the distanceisrecovered
with alarge error.

Let us assume that the two events came from the same fracture
and view the distance between the two events as a simple proxy
for the fracture size. Given the joint distribution of theeat
locations, we can compute the distribution of the distaree b
tween the two events. Toward that end, we generate a sample
from the joint distribution and compute the distance betwee
two points for each sample. Figure 3 shows the resulting dis-
tribution of the distance in red. We then emulate a classical
location approach by computing, from the joint distribatio

the marginal distributions fos; ands,. From these two dis-
tributions, we individually sample; ands,. The histogram

of the distances between these samples is displayed intblue i
Figure 3.

We can see that individual event locations, particulariyths,
have significant uncertainties (standard deviation isrzd@&0 m).
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