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The nonlinear elastic response of rocks is known to be caused by the rocks’ microstructure,

particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of

rocks in a laboratory scale experiment with a unique configuration. This configuration has been

designed to open up the possibility of using the nonlinear characterization of rocks as an imaging

tool in the field. In our experiment, we study the nonlinear interaction of two traveling waves: a

low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump in a room-dry

15� 15� 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it

passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms

were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave

probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns,

corresponding to a change in elastic properties of 0.2%. In order to estimate the strain in our sam-

ple, we also measured the particle velocity at the sample surface to scale a finite difference linear

elastic simulation to estimate the complex strain field in the sample, on the order of 10�6, induced

by the S-wave pump. We derived a fourth order elastic model to relate the changes in elasticity to

the pump strain components. We recover quadratic and cubic nonlinear parameters: ~b ¼ �872 and
~d ¼ �1:1� 1010, respectively, at room-temperature and when particle motions of the pump and

probe waves are aligned. Temperature fluctuations are correlated to changes in the recovered values

of ~b and ~d, and we find that the nonlinear parameter changes when the particle motions are orthog-

onal. No evidence of slow dynamics was seen in our measurements. The same experimental config-

uration, when applied to Lucite and aluminum, produced no measurable nonlinear effects. In

summary, a method of selectively determining the local nonlinear characteristics of rock quantita-

tively has been demonstrated using traveling sound waves. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4905913]

I. INTRODUCTION

Mechanical waves provide information for characteriz-

ing the bulk properties of materials noninvasively. Classical

methods usually create a map of linear information, such as

elastic modulus, to detect structures. Imaging structures are

just a beginning; many applications require more specific in-

formation with the goal of determining the quantitative na-

ture of the structures. In rocks, nonlinear elastic properties

vary over several orders of magnitude,1 making them good

candidates for imaging. This nonlinearity is primarily due to

the microstructure of the rocks.2,3 An understanding of this

microstructure is increasingly important for subsurface ex-

ploration. This study aims to characterize the nonlinearity of

rocks in a laboratory scale experiment with a configuration

that mimics a potential field scenario. In this experiment, we

perturb the propagation of a low amplitude high frequency

P-wave probe with a high amplitude low frequency S-wave

pump. We use a configuration with a large distance between

the probe source and receiver (30 probe wavelengths) and a

propagating pump wave. This experiment is designed as a

preliminary study working toward an imaging method based

on the nonlinear interaction of two waves.

Guyer and Johnson2 demonstrate that nonlinearities in

rocks can be observed with strains as low as 10�8, this level

of sensitivity means that almost any kind of wave propaga-

tion can induce a nonlinear effect; the challenge is in its

detection. Field observation of nonlinear responses induced

by strong or weak earthquakes is well documented (see Ref.

4 for instance), and wave-speed variations on the order of

0.05% have been measured during earthquakes on the San

Andreas fault.5 Actively induced nonlinear responses have

been observed in-situ at the scale of a few meters.6–9

Laboratory measurements are also helpful in understand-

ing the nonlinear elastic response. Of particular importance is

the role of additional compliance due to micro-cracks

including anisotropy and fluid saturation effects.10–14 These

studies were based on changes in acoustic signals under

quasi-static uni-axial stress or hydrostatic pressure. Because

of the difficulty in measuring the small changes induced

by nonlinearities at small strains (10�8 � 10�5), most labora-

tory studies of nonlinearity in rocks use samples in reso-

nance.2,15–18 At these strain amplitudes, no plastic

deformation occurs and tiny perturbations of soft bonds are

responsible for the nonlinear behavior.19 These methods are

generally based on monitoring the frequency and damping of
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particular resonances and thus they average the nonlinear

response during several cycles of tension/compression.

To avoid this averaging, Dynamic Acousto-Elasticity

(DAE) attempts to account for the dynamics of the nonlinear

interaction within a cycle and is the closest method to the

one proposed here. First developed in medical characteriza-

tion of bone and other materials,20–22 it was later applied to

rocks.23–26 The method relies on monitoring the material

several times during a resonant period. The monitoring is

performed with a very low strain probe wave and the high

strain resonant wave is called the pump. This probe wave

monitors changes in the ultrasound properties (wave-speed

and attenuation), during the quasi-static compression and

tension of the material, caused by the pump wave. This

method takes advantage of a uniform strain along a short

probe path due to both 1-D geometry and the resonance of

the sample. The ideas of DAE have also been applied for in-
situ measurement by Renaud et al.27

With the goal of developing an imaging technique for

the nonlinear elastic properties, we propose a DAE experi-

ment with a unique configuration. First, the probe source-

receiver distance is large compared to the pump wavelength.

This allows us to estimate the nonlinearity not only locally

around a source-receiver pair but also in a larger region.

Second, the resonant pump wave is replaced by a propagat-

ing wave, time-gated to mimic an infinite sample. We then

measure the change in the arrival time of the probe as the

pump wave crosses its path. Finally, the P-wave pump is

replaced with an S-wave allowing us to change the relative

particle motions of the pump and probe, by varying the

polarization of the shear wave. In the following, we detail

the motivations for these three unique aspects of our experi-

ment: large source-receiver distance, propagating pump, and

S-wave pump.

The possibility of nonlinear parameter tomography for a

large source-receiver distance is treated theoretically for a

harmonic field in Belyayeva et al.1 Because we use a propa-

gating wave in our experiment, the strain is neither uniform

nor static along the probe path. The homogeneous strain dis-

tribution assumption also does not hold in Geza et al.,28

where an attempt at nonlinear imaging is presented.

The propagating pump wave is common to all in-situ
methods6–9 and has also been tested for a DAE method in

Ref. 27. In these methods, the strain is generally estimated

using embedded instruments. At the laboratory scale, a dif-

ferent option is preferred. Our sample mimics a 2D medium

because the source wave transducer has a diameter approxi-

mately the same size as the smallest dimension of the sam-

ple. We can thus measure the strain on the surface and

reasonably infer its distribution within the sample with finite

difference modeling, resulting in an estimate of the strain

distribution as a function of time. The pump wave field is

different than it would be in a semi-infinite medium due to

differences in geometrical spreading and conversions at the

surface. However, the pump wave remains a propagating

wave which is sufficient to illustrate the feasibility of the

method for in-situ measurement. In addition, preliminary

measurements in a cube show similar results

Both nonlinear propagation of seismic waves and in-situ
methods of nonlinear characterization involve shear strain

components, the interaction of which is the underlying

physics of the nonlinear elasticity. There is a gap between

field observations and laboratory experiments in rocks

because, as far as the authors know, the nonlinear perturba-

tion of the medium is usually considered to be due to only

compressive strain components and does not typically

include shear strain components. The reason for this may

come from the absence of quadratic nonlinearity induced by

a shear strain.1 Laboratory rock experiments include nonlin-

ear effects on shear wave propagation such as shear wave

splitting under uni-axial stress29 and interaction between

compressional and shear waves,30–33 but this does not

include a shear strain component in the origin of the nonli-

nearity. The choice of a shear wave pump in this paper aims

to consider a realistic pump strain field in a subsurface

experiment, which includes shear components. As for experi-

ments, we found no theoretical studies on the effect of shear

strain on nonlinear elasticity; to rectify this a fourth order

elasticity model is presented in the Appendix, inspired by a

series of papers by Destrade et al.34–36

The nonlinear characterization technique is presented in

Sec. II, by discussing the experimental set-up, signal acquisi-

tion procedure, and strain estimation method. A nonlinear

Hooke’s law is introduced in Sec. III, which defines the non-

linear parameters measured experimentally. Experimental

results are then presented in Sec. IV to characterize the non-

linear response of a room-dry Berea Sandstone sample.

II. NONLINEAR WAVE MIXING EXPERIMENT

The characterization of nonlinearity requires two funda-

mental measurements. First, the effect of the pump wave on

the probe propagation is determined from the modulation of

the propagation time through the sample. And second, the

strain induced by the pump wave has to be measured in order

to quantify the nonlinearity. This second step is done with

the use of both a laser vibrometer to estimate the strain at the

surface, and a numerical model of the pump propagation to

estimate the strain in the whole sample.

A. Experimental set-up

Figure 1 shows the experimental setup. We use a

15� 15� 3 cm block of Berea Sandstone, with linear proper-

ties summarized in Table I. We choose Berea Sandstone

because it is relatively well-studied as well as relatively

homogeneous. We generate the low-amplitude (strain less

than 10�7, see Sec. II C) 500 kHz probe signal with a P-wave

transducer with a 2.5 cm diameter (Olympus Panametrics

Videoscan V102-RB) on the left face of the sample

(i.e., propagating in the þx-direction); we record all signals

with an identical P-wave transducer on the opposite face

of the sample. The high-amplitude (strain around 10�6, see

Sec. II C) S-wave pump (F0¼ 50 kHz) is transmitted from a

S-wave transducer with a 2.5 cm diameter (Olympus

Panametrics Videoscan V1548), placed on the top face of the

sample (i.e., propagating in the positive z-direction with its

particle motion aligned along the þx-axis in the xz-plane).

034902-2 Gallot et al. J. Appl. Phys. 117, 034902 (2015)
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The method for estimating the strain is described below; for

the probe we had to amplify the signal so that it would be

visible to the vibrometer, and then linearly scale the esti-

mated strain back to the levels used in the original experi-

ment. This gives us an order-of-magnitude estimate of the

probe strain of 10–7 during the experiment. Even at these low

strains, the probe wave is shown26 to have an effect on the

nonlinear response, but this effect is limited to a slow

dynamic effect (signals changing on the order of seconds

to hours), which is independent of the pump period.37

Slow dynamic effects are not observed in this experiment as

demonstrated in Sec. IV C. The higher amplitude S-wave

pump does perturb the elastic properties of the medium, and

it is these perturbations that we are interested in measuring

via their nonlinear interaction with the P-wave probe. These

interactions remain small, however, and so we compare

the probe signal with and without the pump as described in

Sec. II B.

We record three signals for each data point. The probe

alone ‹, the pump and probe together ›, and then the pump

alone fi. Each signal is independently averaged by the scope

16 times, before moving on to the next signal. Each signal is

recorded for a duration of 20 ls. The entire sequence

‹›fi/0
is recorded for a probe/pump delay / ¼ /0. Then

the sequence is repeated for different delays: ‹›fi/0
,

‹›fi/1
, and ‹›fi/2

. We vary the delay between the probe

and pump signal, /, over several periods of the pump to see

the change in the probe traveltime as a function of the phase

of the pump.

We excite the probe wave at a much lower frequency

than the pump so that we can consider the pump wave to be

in a steady-state during the probe propagation. For our

experiment, the ratio of the excited P-wave probe wave-

length to that of the S-wave pump is about 1/6, although the

recorded difference is somewhat smaller (see Figure 2), due

to dispersion in the sample and rock/transducer coupling.

The choice of a shear wave for the pump allows us to control

the main direction of strain and gives a slower change in

the strain distribution. The number of cycles of the pump sig-

nal is chosen to avoid reflections from the bottom of the sam-

ple (z¼ 15 cm) in order to mimic a semi-infinite medium

with no resonance. The wavelength at this frequency is

ks¼ 3.1 cm so, with 6 cycles, and a return-time of 200 ls,

there is no reflection returning within the time of the probe

propagation across the sample (60 ls). The maximum delay

of the probe excitation (after the pump excitation) is

/ ¼ 120 ls. After probe excitation, the total observation

time (180 ls) is still less than the return time. The probe

wavelength (kp¼ 4.5 mm) ensures that the perturbation

induced by the shear wave pump is uniform as seen by the

probe propagation. The phase delay between the probe and

the pump signals is changed to scan several cycles of the

pump.

FIG. 1. Experimental set-up: a P-wave transducer generates an ultrasonic

pulse at 500 kHz in a 15� 15� 3 cm sample. This probe signal is

recorded, after propagation through the sample, by an identical transducer.

The pump signal is generated with an S-wave transducer at 50 kHz. The

particle velocity of the pump, polarized along the x-axis is measured with

a laser vibrometer. The probe signal and particle velocity are digitized at

250 MHz by an oscilloscope triggered with the signal generator. The refer-

ence coordinate system has a þx axis along the probe propagation (left to

right), þz axis pointing down, and the þy axis perpendicular to the large

surface.

TABLE I. Berea Sandstone sample parameters.

Compressional wave speed cp¼ 2450 m/s

Shear wave speed cs¼ 1550 m/s

Density q¼ 2270 kg/m3

Elastic modulus kþ 2l M¼ 16 GPa

Length L¼ 15 cm

High H¼ 15 cm

Thickness e¼ 3 cm

FIG. 2. (a) First, the original response to the probe pulse with no perturba-

tion (‹ solid line) is recorded on the receiver. (b) Next, we turn on the

shear wave pump to record the superposition of the pump and probe sig-

nals (› solid line). Finally, the response to the pump with no probe is also

recorded (fi dashed line). (c) The perturbed probe, constructed from the

difference between solid and dashed line in (b), is compared to the origi-

nal probe at each phase. In this example, the phase shift between pump

and probe is / ¼ 25 ls. Note that at 50 kHz, the pump signal is attenuated

by �54 dB with a high-pass filter. “Arbitrary units” is abbreviated as

“a.u.”

034902-3 Gallot et al. J. Appl. Phys. 117, 034902 (2015)
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We use an arbitrary waveform generator to create the

probe, pump, and trigger signals. A power amplifier is

needed for the pump signal in order to reach sufficiently high

strains. At the receiving P-wave transducer, we are interested

in the probe signal and not in the pump; obviously when the

pump and probe are both active, we record both signals. To

mitigate this, a second order high-pass frequency filter, with

a cut-off frequency fc¼ 150 kHz, is used to minimize the

amplitude of the pump signal measured at the receiver, so

that mainly the probe signal is recorded. The attenuation of

the filtering is compensated with a pre-amplifier (þ50 dB).

In addition, we use a low-pass filter, cut-off frequency

fc¼ 1.5 MHz to eliminate some high-frequency noise. The

acquisition of the probe signal by the P-wave receiver and

the shear pump displacement measured by the laser vibrome-

ter are synchronized via the trigger signal. The electronics

are fully controlled via MATLAB: transmission and receiv-

ing parameters, as well as the recording of the signals. The

delay dp¼ 8 ms between two consecutive acquisitions, for

example, between ‹ and › is chosen to avoid the superposi-

tion of consecutive signals, i.e., to avoid recording the rever-

beration of the shear wave pump in the sample. For the same

reason, the delay is the same between two consecutive

sequences ‹›fi/0
and ‹›fi/1

.

B. Nonlinear signal observation

Each data point is obtained from the three signals

shown in Figure 2. First, we record ‹ the probe pulse with

no pump present, shown in (a). Second, we record › the

perturbed probe with the pump turned on: solid line in (b).

Third, we record fi the pump signal alone (dashed line (b)).

We then subtract the pump signal (dashed) from the per-

turbed probe and pump signal (solid) to estimate the

perturbed probe, shown in (c). The perturbed probe,

Figure 2(c), is compared to the original one to estimate the

nonlinear perturbation.

The measured arrival time modulation TMmeas, induced

by the interaction over the propagation path of the probe

wave with the pump wave, is defined as

TMmeasð/Þ ¼ Tpð/Þ � Toð/Þ; (1)

where To is the arrival time of the original probe, Tp that

of the perturbed probe, and / is the phase shift (a time delay

added to the transmitted pulse) between the probe and

pump signals. TM is measured by cross-correlating the origi-

nal (shown in Figure 2(a)) and the perturbed (shown in

Figure 2(c)) pulses. The correlation is computed in a two pe-

riod window, centered on the maximum of the signal

(3.3 ls< t< 7.3 ls in Figure 2). The changes in travel time

are small, much smaller than the time sampling interval, so

we interpolate the peak of the cross-correlation with a

second-order polynomial before picking the maximum.38 We

discard data for which the waveforms change, defined as a

correlation coefficient of less than 0.99. We observed that

the subtraction of the low frequency part of the signal does

not modify the waveform, and that the perturbation is small

enough to neglect any stretching of the probe pulse due to

distortion of the waveform.

The TMmeas between the original and perturbed probe is

shown as a function of the phase shift between the probe and

pump in Figure 3, solid line). Each point is an average of 30

acquisitions. We apply a low pass filter with a cutoff fre-

quency at 100 kHz (twice the pump frequency) to TMmeasð/Þ
to remove high frequency components induced by noise.

This filter also removes the 2F0 component of the nonlinear

signal. The remaining signal TMmeasð/Þ clearly has two fre-

quency components, one around the pump frequency as well

as a very low frequency trend. The presence of the pump fre-

quency suggests that TMmeas contains a term proportional to

the pump strain, this is the so-called quadratic nonlinearity.

Then, the low frequency trend requires an additional term

that is always positive. The most likely candidate is the

square of the strain; this cubic linearity is known to be large

in rocks.2 Because the probe wave experiences approxi-

mately three cycles during its propagation from source to re-

ceiver, the hysteresis known to play an important role in

rocks10 cannot be clearly observed.

We repeated the experiment in aluminum and lucite.

As shown in Figure 3, the measured time modulation is

very small in these materials (60.2 ns), without any clear

component at the pump frequency. These signals are at

least an order of magnitude higher than what we would

expect for aluminum (TM� 0.5 ns for a 10�5 strain accord-

ing to Ref. 23; our strain is �10�6) and are almost certainly

experimental noise. In Lucite, the nonlinear parameters are

even smaller (see Ref. 39), confirming the significance of

both the aluminum and lucite measurements. This compar-

ison with standard linear materials ensures that TMmeas

does not originate in the lab equipment, but in the sample

studied.

C. Estimating the strain

As will be shown in Sec. III, the characterization of the

nonlinearity directly relies on the estimation of the pump

strain. We thus need to characterize the pump field within

the sample. At the strain (<10�5 in strain) and at the pump

frequency (50 kHz) we are considering, direct measurements

are impossible to perform with strain gauges. Previous stud-

ies used a laser vibrometer to measure the particle velocity at

a particular point on the sample, and then interpolated the

strain assuming vibration at a single resonance.23 A similar

method is used in this experiment, but since the wave-field is

not a single resonance, we require a more careful numerical

modeling of the wavefield.

FIG. 3. A comparison of the nonlinear response of different materials. The

responses in both Lucite and Aluminum, shown as dashed and dotted lines,

respectively, are significantly smaller than those recorded for Berea

Sandstone, shown as a solid line.
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1. Numerical model

We use a 3D, isotropic, purely elastic (i.e., lossless)

finite difference model, following the method described in

Refs. 40 and 41, to model the linear propagation of the shear

wave pump. We apply free-surface boundary conditions on

all sides of the sample, and compute the stress and particle

velocities on a staggered grid. The same geometry and wave

speeds mentioned in Sec. II A are used as input parameters

to the model; the geometry is shown in Figure 1. The spatial

meshing of the model is 0.5 mm and the time sampling is

0.08 ls.

The challenge in modeling this experiment is in obtain-

ing an accurate model of the transducer, so that the modeled

and recorded waveforms match one another. We model the

transducer with 1250 point force sources distributed on a

disk with a diameter of 2.5 cm. We then use the

x-component of the particle velocity (Vx) recorded by a laser

vibrometer (polytech CLV-3D, see Fig. 1) as the input force

signal for the simulation. In other words, we record the parti-

cle velocity experimentally, and then use that signal to drive

the simulated transducer. Note that the laser signal records

the surface particle velocity at the position (x¼ 7.5, y¼ 3,

z¼ 3.6 cm), while the shear transducer creates a force along

the x-axis at the position (x¼ 7.5, y¼ 1.5, z¼ 0 cm). Because

of this, we scale the amplitude of the numerical result to

match that of the experiment. This is valid because we are

doing a linear simulation. The scaling of the model using

only a single point measurement of particle velocity may

induce errors in the strain estimation, particularly when there

are diffraction effects.

2. Pump strain field

Figure 4(a) shows good first order agreement between

Vx measured by the laser and modeled, after calibration. The

apparent small difference in frequency between the two sig-

nals could be caused by a number of things, the most likely

of which is interferences of different wave types. From the

calibrated simulation, we obtain the stress throughout the

sample, at all times. We then compute the strain, using a lin-

ear Hooke’s law.

We do not excite a pure shear wave because the trans-

ducer has finite size. The radiation pattern of the transducer

is shown in polar coordinates in Figure 4(b) for different

strain components. The radiation pattern is computed from

the numerical model and is defined as the relative amplitude

of each strain as a function of the angle in the xz-plane for a

strain �ij and at a 3 cm distance from the transducer. The

main strain component is the shear �xz strain that corresponds

to the propagating S-wave pump. The strain magnitudes can

be compared by computing the absolute maxima of each

strain (jj�ijjj). The following ratios are found:

jj�xzjj � 1:5jj�xxjj � 2jj�zzjj � 3jj�yyjj � 20jj�xyjj � 40jj�yzjj:
(2)

We thus ignore the shear strains �xy and �yz and do not

show them in Figure 4. The components �xz and �xx have a

similar pattern to that of the tangential and radial

component of the displacement field created by a shear

transducer in an elastic half-space. The other two compo-

nents �yy and �zz are not present in a half-space but arise

from the limited size of the sample along the y-direction

and thus need to be taken into account in the nonlinear

characterization of the material.

3. Probe strain field

For the probe strain estimation, we apply a similar

method with a few changes. First, another laser vibrometer

was utilized to achieve a higher sensitivity around the probe

frequency 500 kHz (a polytech system with a OFV-505

optics head controlled by OFV-5000 with VD-06 decoder).

Second, a sufficient amplitude of excitation was used to

obtain a signal significantly above the noise. The particle ve-

locity was deduced by increasing the input amplitude and

then scaling the laser-measured amplitude. The input maxi-

mum voltage for the probe source transducer was set at 10

times the usual voltage: 20 V instead of 2 V. With a 2 V input

signal, only the transducer was sensitive enough to measure

a signal; the laser vibrometer signal was too noisy to obtain a

reliable signal. The linearity of the transducer emission was

checked by comparing the acoustic signal recorded by the

probe receiver (Figure 1) with a 2 V and a 20 V input. Both

signals have the same waveform and vary by a factor 10 in

amplitude. We measured the resulting x-component of the

particle velocity close to the probe receiver at (x¼ 15,

y¼ 1.5, z¼ 1 cm). We then divide the particle velocity by a

factor 10 to scale the amplitude of the numerically modeled

strain data. In addition to this scaling, the positions and the

FIG. 4. (a) The x-component of the particle velocity at (x ¼ 7:5;
y ¼ 3; z ¼ 3:6 cm) is measured with a laser vibrometer (solid line) and

modeled with a finite difference simulation (dashed line). (b) Polar radia-

tion patterns of the shear transducer are shown for the shear strain �xz (solid

line), and the compressive strains �xx (dashed line), �yy (dotted line), and �zz

(dashed-dotted line). The arrow represents the transducer force direction

(x-axis).
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directions of the point force sources were changed for the

probe simulation (see Figure 1). The result shows that the

volumetric strain decreases nearly linearly along the propa-

gation path from 9� 10�8 around x¼ 0 cm to 4� 10�8

around x¼ 15 cm. The value of 10�7 used above can thus be

thought of as a rough upper bound for the strain excited by

the probe.

III. THEORETICAL DESCRIPTION OF THE
NONLINEARITY

In this section, we establish a fourth order nonlinear

Hooke’s law that relates the pump strain to the elasticity var-

iation. This model depends on many elastic moduli that can

not all be measured in the present experiment. We present an

approximation of the model and two nonlinear coefficients

are defined. Finally, we relate the measured change in travel-

time to the nonlinear coefficients.

A. Nonlinear Hooke’s law

As mentioned in Sec. II B, the present experiment

requires a model of the elastic response that includes both

quadratic and cubic nonlinearities. In addition, the probe

wave interacts with the pump wave over several cycles and

we observe no hysteresis. Consequently, hysteresis is not

included in the model. A fourth order elasticity theory is pre-

sented in the Appendix to relate stress and strain. From the

strain pump characterization, in Sec. II C, we know that �xx,

�yy, �zz, and �xz are of the same order of magnitude; the other

strain components are at least an order of magnitude smaller

and can thus be neglected. Consequently, a complete expres-

sion of the fourth-order nonlinear elastic model of our

experiment is given by

dM

M
¼ bxx�xx þ byy�yy þ bzz�zz þ dxx�

2
xx

þ dyy�
2
yy þ dzz�

2
zz þ dxz�

2
xz : (3)

This expression contains seven interconnected parameters,

which include all of the seven fourth-order elastic moduli

(A, B, C, E, F, G, and H, see the Appendix). The experi-

ment does not allow us to estimate all parameters inde-

pendently, we thus need to simplify Eq. (3). First of all, the

order of magnitude for linear, quadratic, and cubic elastic

moduli are different (i.e., k, l � A, B, C � E, F, G, H)

and we can thus neglect terms containing linear moduli in

the expressions for the quadratic moduli, and terms with

the linear and quadratic moduli in the expression for the

cubic moduli. Since only the quadratic and cubic nonli-

nearities can be measured independently in our experi-

ment, we need to go from 7 unknowns to only 2. One

simple way to achieve this is to assume that quadratic coef-

ficients are of the same order of magnitude: A � B � C,

and the same assumption for the cubic coefficients:

E � F � G � H. This lead to a proportionality between the

different coefficients of the same order:
bxx

10
� byy

4
� bzz

4
and

dxx

48
� dyy

20
� dzz

20
� 2dxz

9
. Under these assumptions, the approxi-

mate nonlinearity is

dM

M
� ~b �xxþ

2

5
�yyþ

2

5
�zz

� �
þ~d �2

xxþ
5

12
�2

yyþ
5

12
�2

zzþ
3

32
�2

xz

� �
:

(4)

The nonlinear parameters ~b and ~d are coefficients of the

quadratic and cubic nonlinearity, respectively, and can be

thought of as averaged elastic moduli: ~b � AþBþCð Þ
3M ; ~d

� EþFþGþHð Þ
4M . They are representative of the nonlinearity but

can vary with the strain distribution since the approximation

implies that all strain invariants of the same order play the

same role in the strain energy (Eq. (A3)). These parameters

can also be considered as empirically defined since only one

parameter per order of nonlinearity can be measured with

one configuration of probe and pump waves.

Such a model is useful for describing the elastic response

of the rock at a fixed pump amplitude. Nevertheless, it does

not capture all the complexity of the mechanical response of

the rock because the nonlinear coefficients change with the

pump amplitude as will be shown in Sec. IV E. The nonlinear

characterization of rocks depends on the amplitude of the per-

turbation, this is why the quantification of the strain is so im-

portant. This also implies that monitoring or imaging

nonlinearities has to be done with a constant pump amplitude

to ensure repeatability.

B. Relating measurements to the nonlinear
parameters

In a linear elastic medium, the wave speed cp is constant

or equivalently the stress r is proportional to the strain � as in

Hooke’s law: r ¼ �M, with the elastic modulus M ¼ kþ 2l,

where k and l are the Lam�e parameters. A consequence of

Hooke’s law is a constant wave speed c2
p ¼ Mq�1, with q the

density of the material. In this section, we detail the necessary

extension of Hooke’s law for the nonlinear wave mixing con-

sidered in this experiment. The arrival time modulation

induced by the pump strain (Fig. 3), can be explained as a var-

iation of the wave speed cp, or equivalently the elastic modu-

lus M. Assuming a homogeneous medium, cp can also be

defined as cp ¼ ‘xT�1, where T is the time of propagation

along a distance ‘x (assumed to be along the þx-axis).

Differentiating both expressions for cp gives

dcp

cp
¼ d‘x

‘x
� dT

T
(5)

and

dcp

cp
¼ dM

2M
� dq

2q
: (6)

In rocks, the variation in distance of propagation d‘x and

density dq can be neglected47 in Eqs. (5) and (6), respec-

tively. Equating these two expressions shows that changes in

time and elastic modulus are proportional to one another,

i.e., that

dT

T
¼ � dM

2M
:
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For an infinitesimal distance along the propagation path dl,
the propagation time is T¼ dl=cp, the change in arrival time

is then

dT � � dl

2cp

dM

M
: (7)

To go from the infinitesimal changes in time and modulus

to the observed changes in travel time, we need to integrate

Eq. (7) over the path length C

TMNL ¼ �
1

2cp

ð
C

dM

M
dl : (8)

In Eq. (8), TMNL models the arrival time modulation meas-

ured in Figure 3 as a function of the variation of the elastic

nonlinearity dM/M, integrated over the propagation path. In

addition, the nonlinearity is a function of the pump strain as

defined in Eq. (4). To estimate TMNL from the pump strain as

described in Sec. II C, and because the pump transducer is

approximately the same size as the S-wave pump wave-

length, the strain needs to be averaged within the ultrasonic

beam. For the sake of clarity, this average is included in the

strain notation: �ijðl; TÞ � h�ijðl; r; TÞir, where r is the radius

of the beam. With this, along with the insertion of T ¼ l=cp

into the time variable of the strain, the time modulation from

the nonlinear elasticity TMNL along the whole propagation

path becomes

TMNL /ð Þ ¼ �
~b

2cp

ð
C
� l;/þ l

cp

� �
dl

�
~d

2cp

ð
C
�2 l;/þ l

cp

� �
dl ; (9)

where �¼ �xxþ 2
5
�yyþ 2

5
�zz and �2¼ �2

xxþ 5
12
�2

yyþ 5
12
�2

zzþ 3
32
�2

xz.

In the present experiment, with a homogeneous material, the

propagation path C is a straight line of length L along the x-

axis. In this case, the total arrival time modulation is

TMNLð/Þ ¼ ~bQð/Þ þ ~dCð/Þ ; (10)

where the quadratic term is defined as

Q /ð Þ ¼ � 1

2cp

ðL

0

� x;/þ x

cp

� �
dx ; (11)

and the cubic part is

C /ð Þ ¼ � 1

2cp

ðL

0

�2 x;/þ x

cp

� �
dx : (12)

These expressions state that the arrival time modulation can

be computed from the strains within the medium estimated

as described in Sec. II C.

IV. EXPERIMENTAL RESULTS

A. Estimating the nonlinear parameters

The nonlinear parameters ~b and ~d are estimated by mini-

mizing the difference between the arrival time modulation

computed from the modeled strain and particle velocity

(Eq. (10)), and the experimentally measured one (Eq. (1)). It

is helpful to point out that the quadratic and cubic parts of

the time modulation have different frequency contents. If the

pump signal is a monochromatic signal, which is close to the

observation of Figure 3, then the strain can be written as

� / cos ðxtÞ, consequently Qð/Þ / cos ðxtÞ and Cð/Þ / 1

þcos ð2xtÞ. This means that the two nonlinear parameters

can be estimated separately by frequency filtering around

their corresponding dominant frequencies via

TMmeas ¼ TMslow þ TMf ast ; (13)

where TMslow contains the frequencies down to F0

2
(F0

¼ 50 kHz is the pump frequency) and TMfast includes the fre-

quencies between F0

2
and 2F0. Then ~b and ~d are computed

with

~b � TMf ast

Q
; (14)

~d � TMslow

C
: (15)

These expressions make sense only for a perfect fit between

measurement and simulation where the ratios in Eqs. (15) and

(14) are constant for different values of the phase shift /.

Because of experimental error, modeling inaccuracies,

etc., an error minimization is performed to estimate ~b and ~d.

Finally, the measured time modulation TMmeas and the time

modulation TM computed from the strain as described in

Eq. (10) show good agreement as shown in Figure 5. The

travel-time perturbation begins after 20 ls, which is when

the pump wave reaches the probe’s propagation path. The

pump oscillation induces the TMfast and the TMslow signal

slowly increases as the pump wave penetrates more and

more of the probe’s path. The phase of the fast part of the

signal TMfast is related to the quadratic nonlinearity Q~b and

agrees particularly well. The poorer agreement between

TMslow and the cubic nonlinearity and C~d is likely directly

related to the accumulation of errors between the

FIG. 5. (a) The nonlinear parameters ~b ¼ �872; ~d ¼ �1:1� 1010 are com-

puted from the fit between TMfast (black line) and ~bQð/Þ (dashed black) for

the fast part, and between TMslow (red line) and ~dCð/Þ (dashed red) for the

slow part using Eqs. (15) and (14). (b) The time modulation TM computed

from Eq. (10) (dashed line) is in agreement with the measured signal TMmeas

(solid line).
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experimental strain and the estimated strain. It could also be

a result of slow-dynamics, although the discussion in

Sec. IV C indicates that this is less likely. The nonlinear

quadratic parameter found in this experiment: ~b ¼ �872 is

the same range as the quadratic nonlinearity determined for

1-D nonlinear elastic model with similar materials23,26

(where the pump induces only an �xx strain component). We

found ~d ¼ �1:1� 1010 for the cubic parameter which is

around two orders of magnitude bigger than in similar stud-

ies. The nonlinear parameters are defined differently in those

studies, however discrepancies of about an order of magni-

tude have been observed for different samples of the same

type of rocks (Lavoux Limestone23,47).

We have now demonstrated that we can observe a

change in the probe wave’s travel-time induced by the shear-

wave pump. In this section, we explore three aspects of how

the elastic modulus of the rock changes during the experi-

ment. First, we look at the change in the modulus M¼ k
þ 2l induced by the pump. These results indicate that we are

not observing so-called slow-dynamics. As mentioned in the

introduction, rocks are known to exhibit a slow-dynamic

response, in which the rock is changed by a strong excitation

(e.g., our pump) and returns to its initial state slowly, over

minutes to days (i.e., over much longer time-scales than our

measurements). Section IV C explores this phenomenon for

our experimental setup. We then look at changes in tempera-

ture, also known to affect nonlinear measurements.

B. Nonlinear response of a Berea Sandstone

We first explore how the modulus changes with strain.

Inverting Eq. (7) shows that the change in elastic modulus is

directly related to the relative time modulation as

dM /ð Þ
M

� �2
TM /ð Þ

To
: (16)

From this, we compute the change in modulus from the trav-

eltime modulation. To understand the relationship between

this change in modulus and the strain induced by the pump,

in the sample, we plot the left-hand side of Eq. (16) as a

function of the cumulative pump strain

� /ð Þ ¼
ðL

0

� x;/þ x

cp

� �
dx : (17)

It is now possible to represent the change of modulus M as a

function of the strain. The maximum change is approxi-

mately 0.2% of the elastic modulus (c.f. 1), which is similar

to observations at large scale during slow slip events,48

earthquakes,5 or volcanism.49

The curve in Figure 6 shows a decrease in M with time

(/ ¼ 0 is the top of the plot), as well as an increase in the cu-

mulative pump strain. The quadratic term (Eq. (11)) is re-

sponsible for the small oscillations of the elastic modulus,

while the cubic term (Eq. (12)) explains this global weaken-

ing (decrease of M) of the material. This weakening is a

result of the accumulation of strain over the time that the

pump interacts with the sample and is not evidence of slow-

dynamics. More precisely, in Eq. (12) we see that the cubic

nonlinearity is governed by the integration of �2 along the

path, over time. What we observe in Figure 6 is the increase

of this integral with time, i.e., as the pump continues to oscil-

late within the sample it causes the integral of the square of

the strain (Eq. (17)) to increase with time. Thus, we are see-

ing an accumulation of the nonlinear effect as the pump con-

tinues to propagate in the sample. In a perfect steady state

regime, each oscillation would describe the same curve. This

regime is not reached due to the finite size of the sample and

the short recording time.

C. Absence of slow-dynamics

As explained above, the change of elasticity shown in

Figure 5 is instantaneous. Nevertheless, as mentioned in the

introduction, it is known that the nonlinear response of

rocks includes a memory effect as reported by Holcomb for

quasi-static measurement10 and by TenCate and others16,37

for dynamic measurements. After a strong excitation, they

observed a weakening that decreases with a very slow

dynamic process, possibly lasting up to several hours. This

time scale can be explored in the present experiment by

changing the delay dp between two pump activations. This

means that we repeat the experiment at the same / and

vary the wait time, dp between two experiments. We vary

dp from 8 ms to 8000 s. The main curve of Figure 7 is

another acquisition of the time modulation already shown

in Figure 5(c), but with a higher pump amplitude. In order

to limit the acquisition time, the time modulation is meas-

ured at each dp for only 3 phase shift values. Because of

this limited measurement we cannot estimate the nonlinear

parameters. Nevertheless, it is clear in Figure 7 that meas-

urements made with different values of the delay dp, all fall

on the same curve, indicating that the delay does not affect

the time modulation TMmeas, and thus the nonlinear

response. It is possible that the maximum strain, on the

order of a microstrain, is too small to observe a slow

FIG. 6. Strain dependency of the elastic modulus: the nonlinear response of

a Berea Sandstone is represented as a change in elastic modulus dMð/Þ=M

in percent as a function of the cumulative strain � /ð Þ ¼
Ð L

0
� x;/þ x

cp

� �
dx

for each phase shift / value from 0 (dMð/Þ=M ¼ 0) to 140 ms (dMð/Þ=M

¼ �0:2%). The quadratic non-linearity ~b is responsible for the oscillations

and the global trend downward comes from the cubic component ~d.
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dynamic process; this is of a similar order-of-magnitude to

that found in previous studies to cause slow dynamics. For

example, Pasqualini et al.50 report a threshold of around

5� 10�7 strain in sandstones to produce a slow-dynamic

effect. The main effect of the slow dynamic process is a

global weakening described by including a constant in the

elastic modulus to strain relationship given in Eq. (4). Any

measurement of TMmeas is based on the acquisition of an

original probe and a perturbed probe when the pump is

turned on (Eq. (1)), which picks up a difference between

two states and not the absolute magnitude of the perturba-

tion. As a consequence, if there is any slow global weaken-

ing it is not measured here. Nevertheless, this observation

ensures that the measured parameters ~b and ~d are independ-

ent of the time properties of the acquisition sequence.

D. Temperature effects

The nonlinear response of materials is known to be sen-

sitive to environmental parameters. We measured ~b and ~d
300 times with a maximal strain of 2:5� 10�6 over a long

period of time (14 days) during which the room temperature

switched two times from the maximum to the minimum

(from 22 �C to 15 �C) allowed by the room thermostat. The

sample was placed in a isothermal box in order to slow down

the change in temperature and damp the fluctuations; a ther-

mometer was also placed in the box to monitor the tempera-

ture. Figure 8 shows the evolution of ~b and ~d as a function of

the time and thus temperature. The maximum of the cross-

correlation between the cubic non-linearity ~d and the temper-

ature is remarkable (0.91), and still important for ~b (0.78).

The curious decorrelation in ~b between days 2 and 6 prob-

ably involves other experimental parameters such as the hu-

midity and pressure that are also known to perturb the

nonlinear response.51,52

Another unexplained feature of this experiment is the

first measurement of ~b after half a day with no pump on day

7 which is 50% smaller than subsequent points. This bias

was noted for all the experiments and for this reason the first

measurement is excluded when an average is performed.

This phenomenon is probably related to a slow-dynamic

effect with a very long recovery time as it is not observed

after 2.2 h (8000 s) in the previous experiment (Figure 7).

Both the effects of temperature decorrelation and first acqui-

sition bias are only present on ~b demonstrating that ~b and ~d
are independent and likely have different physical origins.

Section IV E discusses the physical meaning of these nonlin-

ear parameters.

In making these measurements, we were not able to

directly monitor the strain amplitude as the laser vibrometer

was not available. Estimates of strain are based on the

application of the same voltage to the pump transducer as

used in previous experiments. Our goal, here, is to charac-

terize the effect that varying temperature has on our results.

It remains possible that the origin of this effect is not a

change in the nonlinearity of the rock itself, but instead a

change in the apparatus resulting in a change in the induced

pump strain. It is clear, however, that the effect of tempera-

ture cannot be ignored; to mitigate this effect in other

experiments, we use a combination of shielding to reduce

temperature fluctuations and speed to make the measure-

ments as quickly as possible to avoid the effects of such

fluctuations on the result. Note also that the large fluctua-

tions shown in Figure 8 are a result of a �10 �C fluctuation

which is significantly more than is usually observed in our

laboratory.

E. Strain amplitude dependency

In the description of nonlinear parameters given in

Sec. III B, we discuss a nonlinear Hooke’s law. This can, of

course, be translated to a wave equation in which the wave

speed becomes strain dependent (cf Eq. (A7)). For rocks, it

is reported that the strain wave-speed relationship is itself

amplitude dependent meaning that the nonlinear parameters

depend on the strain.24 The nonlinear elastic model is thus

valid only at a fixed maximum strain of the pump, and the

nonlinear coefficients ~b and ~d are functions of this

amplitude.

Our experimental set-up enables the characterization of

this feature of the nonlinearities. Estimation of the nonlinear

parameters was repeated for 18 pump shear wave ampli-

tudes. The induced strain along the probe path, estimated by

the method described in Sec. II C, attains a maximum rang-

ing from 0.3 to 2.2 microstrain. Figure 9 shows ~b and ~d as a

FIG. 8. The 14-day evolution of ~b; ~d (red dots) and the room temperature

(in Celsius, black dots) demonstrates the strong correlation between ~d and

the temperature, and a fair correlation between ~b and the temperature.
FIG. 7. The solid curve shows the time modulation TMmeas measured with a

delay 8 ms between two pump activations (i.e., the repetition frequency).

This is the same curve as 5(b) with a different pump amplitude. An average

over 10 acquisitions was performed and the error bars reflect the variation

between those acquisitions. The time modulation is shown at 3 phase shift

values using delays of activation ranging from 8 ms to 8000 s. The inset

gives a closer look at the different delays of acquisition at one phase and

shows that the variations for different delays is within the noise of the

experiment: we observe is no slow-dynamic effect in the measurements.
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function of the strain and their standard deviation among 300

sets of 18 pump amplitudes. Each set represents 1 h of acqui-

sition. The averaging over 300 acquisitions is performed af-

ter an adjustment of the median value of each acquisition set

in order to remove the environmental effects such as the tem-

perature effects discussed above. The standard deviation is

clearly related to the signal to noise ratio as it decreases with

increasing pump strain and is much bigger for ~b, whose esti-

mation is based on a signal approximately 7 times smaller

than that of ~d. Figure 9 demonstrates that above a micro-

strain ~d increases linearly with the strain and ~b decreases lin-

early with it. The changes are noticeable but remain small

for nonlinearities less than 20%. The quadratic nonlinearity

decreases with the absolute strain while the cubic nonlinear-

ity, which is primarily responsible for the rock softening,

increases. This is in agreement with the observations of

Renaud et al.24,25 The different strain dependencies for the 2

nonlinear parameters suggest that the underlying mecha-

nisms from which the quadratic and cubic nonlinearity origi-

nate are different.

The inset in Figure 9 shows the spatial distribution of

the strain along the probe wave path, modeled with finite

difference and scaled to the experiment as described above,

and clearly shows that the strain in the medium is not

homogeneous. The antisymmetry axis at x¼ 7.5 cm is in

agreement with the wave response (in strain) to a point

force: compression in one half space and tension in the

other one. The free boundaries conditions at x¼ 0 and

x¼ 15 cm also have a clear effect on the spatial distribution

of strain.

Because of this antisymmetry, the maximal strain is

only an indicator of the strain amplitude and must thus

be interpreted carefully when comparing to methods

where the strain is nearly uniform. Furthermore, since the

nonlinear parameters are amplitude dependent, the spatial

distribution of the strain may also affect the measurement,

even with the spatio-temporal integration described in

Eq. (9).

F. Pump orientation

The shear wave pump creates an anisotropy in the me-

dium, as any uni-axial static load would do (Ref. 53, p. 64). In

other words, the mechanical response of an isotropic medium

becomes dependent on the direction of the pump; this effect

vanishes when the pump is turned off. In this section, we study

this effect by changing the direction of the strain pump shear

wave particle motion relative to the probe direction.

Previously, the propagation of the probe wave and the pump

strain occurred in the x-direction in the xz-plane (Figure 1), i.e.,

the particle motions of the pump and probe are aligned. It is

convenient to change the pump strain direction with a rotation

of the pump transducer about the z-axis (directed downward in

Figure 1). This rotation is a technical challenge because of the

need to maintain constant coupling between the S-wave trans-

ducer and the sample. We solve this by applying a homogene-

ous and perfectly oriented force (along the z-axis) to the

transducer. This force should create a constant coupling, insen-

sitive to a rotation around the z-axis. We find the best solution

to be a cylindrical load above the transducer with a significant

layer of S-wave couplant to provide adequate lubrication dur-

ing rotation and to minimize the variation in coupling due to

drying of the couplant. The rotation of the transducer was care-

fully performed by small steps in angle to minimize any other

perturbations from the change in weight distribution. The sta-

bility of the method was checked visually with a transparent

sample and quantitatively as described below.

The x-component of the displacement was measured

with another shear wave transducer placed at the position of

the laser beam in Fig. 1: 3 cm under the pump transducer on

the ð~z;~yÞ surface. The measurements of the x-component

of the displacement for the pump transducer oriented along

~p ¼ cos h~x þ sin h~y were found to be close to the projection

of ~p along~x, within a 10% error. This indicates that the cou-

pling remains relatively constant during the rotation of the

pump transducer.

The nonlinear elastic model in Eq. (4) does not include

the �yz because we noted that this term was negligible (see

Eq. (2)). When h ¼ p
2
, the main component of the displace-

ment is along y-axis and �yz becomes the main strain compo-

nent. Including this term in the elastic model modifies Eq.

(4) as follows:

dM

M
� ~b �xx þ

2

5
�yy þ

2

5
�zz

� �

þ ~d �2
xx þ

5

12
�2

yy þ
5

12
�2

zz þ
3

32
�2

xz þ
1

16
�2

yz

� �
: (18)

Then, the same procedure described in Sec. II C is per-

formed to estimate ~b and ~d as a function of the angle h. The

finite difference simulation was performed for h ¼ ½0; p
4
; p

2
	

in order to estimate the strain components within the

sample and compute the quantities defined in Eqs. (11)

and (12), with the only change of �2 ¼ �2
xx þ 5

12
�2

yy þ 5
12
�2

zz

þ 3
32
�2

xz þ 1
16
�2

yz. The nonlinear parameters ~b and ~d are esti-

mated from the measured time modulation using Eqs. (14)

and (15). Because no laser measurements were available in

FIG. 9. ~b and ~d (respectively, red and black) as a function of the maximum

induced strain in the sample by different amplitudes of the shear wave

pump. Above 0.6 microstrain, ~b decreases with strain, whereas ~d increases

implying different mechanisms. The abscissa is the maximum of the strain

over the whole propagation time of the pump measured along the probe path

(0< x< 15 cm, 0< y< 3 cm, 1.5< z< 4.5 cm). The variation of this maxi-

mal strain along the x-axis shown in the inset illustrates the inhomogeneous

spatial distribution of strain in the sample, obtained from the finite difference

simulation.
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this experiment, only the relative value of strain is esti-

mated and the nonlinear parameters are normalized by their

value at h¼ 0.

The measured and simulated time modulations are

shown in Figure 10 and establish the dependency of the non-

linear parameters on the angle h. No value of ~b is estimated

at h ¼ p
2

because the measured fast component of TMmeas is

very close to the noise level and does not have any phase

correlation with the modeled signal. Nevertheless, the value

of ~b p
4

� �
¼ 0:7 indicates that the quadratic nonlinearity

decreases when the direction of the particle motion of the

pump is orthogonal to that of the probe. On the contrary,
~d p

2

� �
¼ 4 shows an increase of the cubic nonlinearity in this

case. This apparent anisotropy has to be considered carefully

because, ~b and ~d may vary with the strain distribution (see

Sec. IV E). This distribution clearly changes when the pump

transducer is rotated and this may bias the anisotropy

measurement.

V. CONCLUSIONS

Previous experiments of nonlinear elastic effects

depended on standing waves and finite-sized samples under

compressional stress. In this work, we demonstrate the fea-

sibility of using two propagating waves for estimating

nonlinear properties of a rock. In our experiments, a micro-

strain pump wave modulates a probe wave; the resulting

arrival time modulation was determined to be a cubic func-

tion of the complex strain field. The measured time modula-

tion is on the order of tens of nanoseconds, measured in a

Berea Sandstone sample with a 50 kHz S-wave pump and

a 0.5 MHz P-wave probe. We fit the time modulation

data with a two-parameter model: a quadratic and a cubic

nonlinearity term related theoretically to averaged elastic

moduli of third and fourth order, respectively. Temperature,

strain amplitude, and the polarization of the pump wave rel-

ative to the probe wave direction can affect the measured

time delays; longer term slow-dynamic effects do not

appear to be significant. Future work will be directed

towards investigating larger samples and different types of

rocks.
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APPENDIX: FOURTH ORDER ELASTICITY THEORY

The description of a nonlinear elastic system starts from

the strain energy W. The stress rij associated with the strain

is then given by

rij ¼
@W

@�ij
; (A1)

where �ij ¼ @ui

@xj
is the Eulerian strain with ui the displace-

ment along the i-axis with i¼ x,y,z. The derivative in

Eq. (A1) implies that the strain energy must be fourth-order

in the strain to result in a third order (cubic) stress-strain

relationship. For an isotropic material (we neglect the 4%

anisotropy measured in our sample), Landau and Lifshitz42

show that the strain energy can be described by the three

invariants

Ik ¼ trðLkÞ; k ¼ 1; 2; 3; (A2)

where L is the Lagrangian strain: Lij ¼ 1
2
�ij þ �jið

þ
P

k �ki�kjÞ. The subscript denotes the minimum order of

the invariant I1,2,3; these invariants are the traces of L, L2,

and L3, respectively. For linear elasticity only the first two

orders are considered: I1 and I2. Landau and Lifshitz42 write

the strain energy W3 up to third order by including terms in

I3, I1I2, and I3
1. There are 4 combinations of the invariants in

the strain energy at the fourth order: I1I3; I2
1I2, I2

2, and I4
1,

thus the fourth-order strain energy is36,43–45

W ¼ k
2

I2
1 þ lI2 þ

A

3
I3 þ BI1I2 þ

C

3
I3
1

þ EI1I3 þ FI2
1I2 þ GI2

2 þ HI4
1 ; (A3)

where A, B, and C are the third order elastic moduli intro-

duced by Landau–Lifshitz,42 and E, F, G, and H are the

fourth order elastic moduli.43

In order to understand the present experiment, we first

consider the ideal case of a P-wave probe propagating along

the x-axis and a pure S-wave pump propagating along z-axis

polarized along the x-axis. The probe and pump waves

induce �xx and �xz strain components, respectively. The strain

energy W, computed as a function of these two strain compo-

nents including terms at the fourth order and below is

W ¼ M

2
�2

xx þ
l
2
�2

xz þ c1�
3
xx þ c2�xx�

2
xz

þ c3�
4
xx þ c4�

2
xx�

2
xz þ c5�

4
xz : (A4)

In Eq. (A4), the linear elastic modulus, M is given by

M ¼ kþ 2l ;

FIG. 10. The measured (solid lines) and modeled (dashed lines) time modu-

lations are shown for different values of the angle h between the x-axis and

the orientation of the S-wave transducer ~p. The main pump direction of the

strain is indicated by the colored arrows and the probe direction is in black.

The red line corresponds to the standard case where probe and pump are

along the x-axis in red (particle motions are aligned). The normalized non-

linear parameters ~b and ~d in the inset show the anisotropy of the nonlinear

response.
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the third order coefficients are

c1 ¼
M

2
þ Aþ 3Bþ C

3
;

c2 ¼
M

2
þ Aþ 2B

4
;

and the fourth order coefficients are

c3 ¼
M

8
þ Aþ 3Bþ C

2
þ Eþ Fþ Gþ H ;

c4 ¼
M

4
þ 5Aþ 14Bþ 4C

8
þ 3Eþ 2Fþ 4G

4
;

and

c5 ¼
M

8
þ Aþ 2B

8
þ G

4
:

The stress is computed from the strain energy by rij ¼ @W
@�ij

;

because we are interested in changes in the probe wave, we

require only rxx, the probe stress

rxx ¼ M�xx þ 3c1�
2
xx þ c2�

2
xz þ 4c3�

3
xx þ 2c4�xx�

2
xz : (A5)

In Eq. (A5), the first term (Hooke’s law) is responsible for

linear probe wave propagation, the second and fourth terms

are the quadratic and cubic nonlinearities in the probe

propagation, respectively, and the third term governs the

nonlinear propagation of the pump. It is the fifth term

2c4�xx�
2
xz that describes the interaction of the two waves.

Renaming the probe strain �p ¼ �xx to highlight the ampli-

tude difference between probe and pump: �p � �xz, we

observe that this interaction term is clearly the dominant

nonlinear effect. We then simplify Eq. (A5) to include only

the linear propagation and the interaction of the pump and

probe

rxx ¼ �pðM þ 2c4�
2
xzÞ : (A6)

From Eq. (A6), the importance of the cubic term in �p�
2
xz for

the nonlinear coupling is highlighted. In this case there is no

quadratic coupling term in (�p�xz) because the corresponding

term in strain energy (�2
p�xz) is not present. Other pump strain

components will introduce this dependence. Including this

stress in the dynamic response of the elastic system gives a

nonlinear (wave-like) equation of propagation for the P-

wave probe

q€ux ¼
@rxx

@x
¼ @

2ux

@x2
M 1þ dM

M

� �
: (A7)

In Sec. III B, we show that the nonlinear term dM/M is

directly related to the measured arrival time modulation. In

the simplified example discussed here, dM/M contains only a

cubic term: dM=M ¼ dxz�p�
2
xz, with dxz ¼ 2c4 the cubic coef-

ficient reported in line 3 of Table II.

This ideal case of a pure shear wave illustrates the com-

putation of the fourth order wave mixing coefficients, but in

Sec. II C we note that the pump wave field is more complex

than a pure shear strain. We thus need to consider other

strain components. For a P-wave probe propagating along

the x-axis, there are 4 combinations of pump strain summar-

ized in Table II. For each case, the strain energy is computed

and the nonlinear stress-strain relationship is obtained by dif-

ferentiating W with respect to �xx (as in Eqs. (A4)–(A6)). The

linear term remains unchanged since it relates to the linear

propagation of the probe and not to nonlinear wave mixing.

Each combination of strain gives one quadratic coefficient,

which weights the coupling between the probe strain �p and

the pump strain �ij, and one cubic coefficient for the coupling

with �2
ij. In the case of a P-wave pump along the x-axis, �xx

includes both the probe strain �p and the pump strain �xx.

Substituting �xx � �p þ �xx along with �xz ¼ 0 in Eq. (A5)

and neglecting the nonlinear propagation of waves (�2
p,

�3
p; �

2
xx and �3

xx) yields the probe stress rxx

rxx ¼ M�p þ 6c1�p�xx þ 12c3�p�
2
xx : (A8)

The quadratic coefficient bxx ¼ 6c1=M and the cubic coeffi-

cient dxx ¼ 12c3=M are reported in the first line of Table II.

The quadratic coefficients gathered in Table II (second col-

umn) were obtained by Guyer et al. (Ref. 3, p. 47) and the

cubic coefficients are given in Ref. 46 (p. 268) as a function

of the elastic tensors (Cijk and Cijkl). The quadratic coeffi-

cient is nonzero only with a compressive strain pump, this is

confirmed in Ref. 46 (p. 266) where the third order elastic

tensor Mijklmn is found to be zero for a shear strain pump

(i¼ j¼ k¼ l, and m 6¼ n).
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