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Microquake seismic interferometry with SVD-enhanced Green’s 
function recovery

The conditions under which seismic interferometry (SI) 
leads to the exact Green’s function (GF) are rarely met 

in practice. As a result, we generally recover only estimates 
of the true GF. Th is raises the questions: How good an 
approximation to the GF can SI give? Can we improve this 
estimated GF?

To recover the full GF between two receivers using SI 
requires that these two receivers be surrounded by a surface 
of sources, with both monopole and dipole sources required 
for accurate amplitude estimates. Because dipole sources 
are rarely available in practice, here we focus primarily on 
recovering traveltimes. Accurate estimation of these travel-
times still requires full (monopole) source coverage, however, 
and this is an assumption that is rarely met in practice. Th is 
results in a degradation of the quality of the recovered GF, 
which then needs to be carefully interpreted. In the ideal case, 
Snieder (2004) showed that the sources that give the main 
contribution to the causal and anticausal GFs are the ones lo-
cated along the raypath between the two receivers, and those 
in the Fresnel zone around these sources. Snieder came to 
this conclusion using the method of stationary phase: Th e 
sources along the raypath are the sources at which the phase 
is stationary. Energy emanated by sources outside the Fresnel 
zone should cancel out, again assuming full source coverage, 
as they are outside the zone in which the phase is stationary.

When the coverage is not ideal, or when the source/re-
ceiver locations and raypaths are not well known, this non-
stationary energy will not cancel, resulting in errors in the 
recovered GF. To alleviate this problem, we employ additional 
information than is typically used. Th is information comes 
from the collection of cross-correlated traces, one for each 
source for a pair of receivers, which we shall refer to as the 
cross-correlogram. It is by stacking the cross-correlogram in 
the source dimension that we obtain an interferometric GF. 
In general, this cross-correlogram has both stationary energy, 
that should contribute to the estimated GF and nonstation-
ary energy that should not. Stationary energy in the cross-cor-
relogram is characterized by linearity, coherency, low wave-
number, and thus nearly in-phase events along the source 
dimension. Nonstationary energy by contrast is characterized 
by nonlinearity, incoherency, high wavenumber, and out-of-
phase events along the source dimension. We exploit these 
diff erences to separate the two parts of the energy in the cross-
correlogram to obtain more accurate GF estimations for cases 
that are not ideal.

To perform this separation and extract more information 
from the cross-correlograms to ultimately improve the GF, we 
follow Melo et al. (2010) in which the singular value decom-
position (SVD) (e.g., Golub and van Loan, 1996) is used to 
do this separation. SVD is a numerical technique commonly 
used in seismic data processing (e.g., Ulrych et al., 1988; Sac-
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chi et al., 1998) to increase the signal-to-noise ratio and fi lter 
linear events. Melo et al. showed how SVD is able to enhance 
physical arrivals that are not properly recovered using stan-
dard stacking in SI and generally recover arrivals that would 
otherwise be obscured by noise. Here we further investigate 
the relationship between SVD and SI in the microseismic 
context discussed below.

To understand why SVD is able to separate stationary and 
nonstationary energy we must fi rst understand the relation-
ship between frequency and singular values. Th is relationship 
is discussed by Hansen et al. (2006) where they explain the re-
lationship between singular values and frequency (or source-
wavenumber in our case)—large singular values correspond 
to low frequencies and small singular values correspond to 
high frequencies. As they correspond to low-frequencies, large 
singular values are associated with events that are in phase in 
the cross-correlogram: stationary sources whose energy con-
tribute to the GF. In the context of waveguides, Philippe et 
al. (2008) exploit the connection between singular values and 

Figure 1. Cross-correlogram matrix C. Stacking over 
sources gives interferometric GF.

Figure 2. Cross-correlogram matrix C and its lower-rank 
approximation C’ obtained through SVD.
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seismic context this would greatly increase the available data 
set as there are generally few receivers and many sources. In 
addition, as is well known, noise is a major issue with micro-
seismic data. Noise-contaminated data lead to poor event lo-
cations, which creates uncertainty as to which receivers are in 
the Fresnel zone for a given pair of sources. Simply summing 
the responses from all receivers will not solve this problem be-
cause the receiver array is generally sparse. Here we show how 
using SVD to decompose the cross-correlogram before stack-
ing helps to alleviate this problem. In addition to these prop-
erties, we fi nd that SVD also allows some level of separation 
of the GF into diff erent components—main arrivals (direct, 
singly refl ected, and refracted waves), multiple scattering, and 
noise. To separate signal from noise directly in the GF is dif-
fi cult, especially for coda waves, because the noise may have 
comparable amplitude and temporal frequency content to the 
coda. Doing this separation is important because coda waves 
contain information about the inhomogeneities in the me-
dium, while noise does not. We show preliminary results il-
lustrating that it may be possible to extract information about 
these diff erent components in the cross-correlated traces be-
fore stacking them to form the GF.

frequency for characterization of targets. Th ey show that the 
fi rst singular value associated with a given target is propor-
tional to the backscattering form function of the target, and 
that the second singular value is proportional to the second 
derivative of the angular form function. Th en, they use SVD 
to extract the backscattered frequency signature of a target in 
a waveguide. Here, we fi lter the cross-correlograms by using 
a lower-rank approximation, computed with SVD using the 
largest singular values, to enhance events that are coherent 
across multiple sources, thus isolating this stationary energy. 
In this way, we exploit the fact that stationary signal is at 
lower wavenumbers than non-stationary signal to separate 
it from nonstationary signal. We illustrate this method with 
synthetic results for both homogeneous and scattering media 
simulating a possible application with downhole receivers.

Th ese examples are meant to illustrate the particular ap-
plication we have in mind for this technique, which is the 
estimation of the GF between two sources in a geothermal 
reservoir. While most applications of SI estimate the GF 
between two receivers surrounded by sources, Curtis et al. 
(2009) show, using reciprocity, that it is also possible to use 
SI to estimate the GF between a pair of sources. In the micro-

Figure 3. (a) Source-receiver geometry with 13 evenly distributed sources (red stars)in each of the stationary zones of the receivers 
(blue triangles); (b) original cross-correlogram; (c) rank 2 cross-correlogram; (d) standard interferometric GF, G; (e) rank 2 GF, G2. 
Th e black line corresponds to the interferometric GFs and the red line to the true GF. Th e GFs in (d) and (e) are similar.
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Method
We now consider the cross-correlogram as a matrix, C, where 
each row is the cross-correlation of the signals at the two 
receivers from one source. Th us, the vertical dimension of 
C is source and the horizontal is time, as shown in Figure 1.

Next, we decompose the cross-correlogram using SVD 
(see Golub and van Loan for a description of SVD). Th e 
SVD decomposition of the cross-correlogram matrix is, C = 
U∑Vt, where U and V are the left and right singular vector 
matrices, and ∑ is the diagonal matrix whose elements are the 
singular values of C. Figure 2 shows how we obtain a lower-
rank approximation C’ of the cross-correlogram by selecting 
only the largest singular values of the SVD decomposition of 
C. Stacking the rows of C gives the standard interferometric 
GF, G, and stacking the rows of the approximation C’ gives 
the modifi ed interferometric GF, Gj, where j is the rank of C’ 
(the number of singular values retained). In the examples that 
follow, we compare these two GFs.

We now illustrate this procedure with a simple example. 
Th e model for this example is a constant velocity and den-
sity model with no refl ectors, so the GF consists of the direct 
wave only. We examine how well we can approximate the 

true GF in three cases: (1) the case where there are stationary 
sources only; (2) nonstationary sources only; and (3) both 
stationary and nonstationary. In all three cases there are gaps 
in the source coverage and all the GF are normalized as we do 
not have dipole sources.

First, consider a case where there are sources only in the 
stationary-phase zone, Figure 3a. Th e energy from these 
sources contributes constructively to the GF. Comparing 
the standard (Figure 3b) and rank 2 (Figure 3c) cross-corre-
lograms and the respective estimated GFs, G and G2, (Fig-
ure 3d and 3e), we see that the standard and the lower-rank 
cross-correlograms and GFs are quite similar. We use a rank 
2 approximation of the cross-correlogram because there are 
two stationary-phase zones in the cross-correlogram and thus 
two signals we wish to reconstruct. In this simple example, 
it is obvious what the rank of the cross-correlogram approxi-
mation should be, which is not the case in general. Th is is a 
case where standard interferometry works well and the SVD 
technique is not necessary, although it is also not detrimental.

In case 2, there are only nonstationary sources (Figure 
4a). Ideally, all of this nonstationary energy should cancel but 
if there are gaps in the source coverage residual energy will 

Figure 4. (a) Source-receiver geometry with 21 evenly distributed sources (red stars) in each of the nonstationary zones of the 
receivers (blue triangles); (b) original cross-correlogram; (c) rank 2 cross-correlogram; (d) standard interferometric GF, G; (e) rank 2 
GF, G2. Th e black line corresponds to the interferometric GFs and the red line to the true GF. In (e) the GF does not contain the edge 
eff ect present in (d).
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Figure 5. (a) Source-
receiver geometry 
with 13 and 9 evenly 
distributed sources 
(red stars) in each of 
the stationary and 
nonstationary zones 
of the receivers (blue 
triangles), respectively; 
(b) original cross-
correlogram; (c) rank 
2 cross-correlogram; 
(d) standard 
interferometric GF, 
G; (e) rank 2 GF, 
G2. Th e black line 
corresponds to the 
interferometric GFs 
and the red line to 
the true GF. In (e) 
the fl uctuations are 
reduced and the GF is 
clearer than in (d).

Figure 6. (a) Source-
receiver geometry 
= one borehole 
with 35 receivers 
(blue triangles) and 
two microquakes 
(red stars); (b) 
original cross-
correlogram; (c) rank 
1 cross-correlogram; 
(d) standard 
interferometric GF, 
G; (e) rank 1 GF, 
G1. Th e black line 
corresponds to the 
interferometric GFs 
and the red line to 
the true GF. In (e) 
the fl uctuations are 
reduced and the GF is 
clearer than in (d).
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remain because of edge eff ects. As is clear in Figure 4d, G is 
not a good estimate of the correct GF, but it appears as if it 
contains a physical arrival. While G (Figure 4d) contains two 
nonphysical arrivals due to edge eff ects, G2 (Figure 4e) does 
not. Th e rank 2 cross-correlogram (Figure 4c) in this case 
does not enhance any linearity and does not even resemble 
the original cross-correlogram (Figure 4b). Th e rank 2 cross-
correlogram and G2 thus act as a diagnostic of nonphysical 
arrivals.

Case 3 mixes the two previous cases. Figure 5a shows 
sources uniformly distributed in each stationary zone and 
each nonstationary zone, but with gaps in between. Th e cross-
correlogram (Figures 5b and 5c) thus has energy contributing 
to the GF and energy that should cancel out completely but, 
because of the gaps, does not. Th e rank 2 approximation fi l-
ters the pseudo-noise caused by the imperfect cancellation of 
nonstationary energy, and G2 is more accurate then G as seen 
in Figures 5d and 5e.

Examples
Th is example approximately mimics an idealized source/re-
ceiver geometry of a downhole monitoring of microseismic 

activity in a geothermal reservoir. We use a single borehole 
with 35 receivers and estimate the GF between two micro-
quakes as shown in both Figure 6a and Figure 7a. Th e refer-
ence and interferometric GFs shown here are all normalized. 
Th e idea is to obtain the interferometric GF between a pair 
of sources (microquakes) instead of a pair of receivers, simi-
lar to what is done in Curtis et al. (2009) for a larger-scale 
problem. Th e medium is weakly scattering with a constant 
background velocity and density. We study two cases: fi rst, 
we do the cross-correlations in a clean data set (Figure 6) and 
second in a noisy data set (Figure 7). Th e additive noise and 
random scattering we use here are realizations of a Gaussian 
random fi eld with prescribed correlation lengths along given 
directions. We focus our observations on two things: the 
phase of the direct wave and the energy in the coda. We add-
ed enough noise to completely obscure the direct wave and 
distort the waveform of the coda wave in the interferometric 
GF and show how SVD improves both of these measures.

In the fi rst example (Figure 6), even though the data are 
noise free, there is enough nonstationary energy in the cross-
correlogram from receivers outside the Fresnel zone (Figure 
6b) to create high-amplitude fl uctuations that hide the direct 

Figure 7. (a) Source-receiver geometry = one borehole with 35 receivers (blue triangles) and two microquakes (red stars); (b) 
original cross-correlogram; (c) rank 1 cross-correlogram; (d) standard interferometric GF, G; (e) rank 1 GF, G1. Th e black line 
corresponds to the interferometric GFs and the red line to the true GF. In (e) the random noise is reduced to the level of the coda 
and the GF is clearer than in (d).
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wave. Here we chose the rank 1 approximation (Figure 6c) 
because the GF consists of only one direct wave and thus 
there is only one zone of stationary-phase energy in the cross-
correlogram. In Figure 6e, the fl uctuations were damped 
in G1 as compared with G in Figure 6d, leading to a much 
clearer GF. Cross-correlation of both GFs, G and G1, with the 
reference GF peaks at 0.2835 and 0.0020 s (time-sampling 
interval is 0.0005 s), respectively, shows a signifi cantly more 
accurate phase estimate with G1 than with G. We use the 
L2-norm (square-root of sum of squares) of the coda waves 
as a measure of the energy in the coda. By comparing the 
reference and the interferometric coda waves, we fi nd relative 
errors of 98% for the coda wave in G and only 12% for G1, 
demonstrating that G1 is a better approximation of the true 
GF than G, in this norm.

To make this example more realistic, we add weakly cor-
related noise to the data in Figure 6. In Figure 7d, G appears 
strongly contaminated by noise and neither the direct arrival 
nor the coda wave are visible. In Figure 7e, fl uctuations and 
random noise are strongly attenuated in G1, revealing not 
only the direct arrival but also reducing the noise close to the 
coda-wave level. Th e phase diff erences between G and G1 and 
the reference GF are 0.2850 and 0.0015 s, respectively. Th e 
relative errors in the L2-norm of the coda are 148% for G and 
11% for G1. We see that SVD eliminates most of the noise 
in the coda wave, as well as the fl uctuations before the direct 
wave, demonstrating its stability with respect to noise.

For the noisy case, we performed tests for a variety of re-
ceiver apertures, noise levels, and spacing between receivers. 
We fi nd that the absolute improvement obtained through 
SVD varies from case to case but the phase of direct wave and 
the coda energy, in general, are closer to correct with SVD 
than without. Th is noise attenuation is particularly important 
in microseismic studies as the data are typically quite noisy. 
Stability with respect to aperture is also important because er-
rors in the location of microquakes can be signifi cant.

Discussions, conclusions, and future work
Th e accurate estimation of the GF with source coverage that 
is not ideal remains a signifi cant problem in SI. We have 
shown how using SVD to approximate cross-correlograms 
before stacking is a promising approach to alleviate this 
problem. In general, for the SVD technique to work, there 
must be more stationary energy than nonstationary energy 
in the cross-correlogram, although this requirement can be 
relaxed somewhat through normalization of the traces in the 
cross-correlogram. How much more energy is necessary and 
how much noise can be accommodated are subjects of ongo-

ing research.
We are also continuing to investigate which properties of 

coda waves can be accurately inferred from the GF obtained 
through SVD; the preliminary results shown here indicate 
that such properties are better recovered with SVD than 
stacking alone. Separating real signal from noise would lead 
to a coda that truly refl ects the scattering characteristics of the 
medium thus allowing for the use of coda waves to retrieve 
information about the scattering strength and through this 
about fracture characteristics in a reservoir. 
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