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SUMMARY

Time-lapse seismic data are widely used for monitoring sub-
surface changes. A quantitative assessment of how reservoir
properties have changed allows for better interpretation of fluid
substitution and migration during processes like oil and gas
production, and carbon sequestration. Full waveform inver-
sion has been proposed as a way to retrieve quantitative esti-
mates of subsurface properties through seismic waveform fit-
ting. However, for most monitoring systems, the offset range
versus depth of interest is not large enough to provide infor-
mation about the low wavenumber velocity model. In this
study, we present a wavefield tomography method using the
local warping between baseline and time-lapse images as the
cost function. The new cost function is sensitive to volumet-
ric velocity anomalies, and capable of handling large velocity
changes, where traditional full waveform inversion fails. In
this paper, we first describe the theory and workflow of our
method, and then we show a numerical example to demon-
strate its advantages.

INTRODUCTION

Time-lapse seismic monitoring is often applied for reservoir
management in the oil industry to obtain information about
reservoir changes. It helps identify bypassed oil to be tar-
geted for infill drilling which extends the economic life of
a field (Lumley, 2001). It is also capable of monitoring the
progress of fluid fronts, providing information for injection
optimization in enhanced oil recovery and long-term fluid stor-
age like carbon sequestration (Bickle et al., 2007). Generally,
one baseline survey and subsequent monitoring surveys are ac-
quired over time. Analysis and comparison of the datasets pro-
vides an estimate of changes in seismic velocity and mass den-
sity. These changes are related to changes in dynamic reservoir
properties like pore pressure and fluid saturation (Dadashpour
et al., 2008) that are important in reservoir simulation and in-
terpretation.

To quantitatively recover rock physical parameters, full wave-
form inversion (FWI) (Tarantola, 1984; Virieux and Operto,
2009) is being tested on individual surveys. The application
of FWI to time-lapse data seems straight-forward, however, in
practice it is constrained by the survey design, data quality and
the nonlinear nature of FWI. Research on inversion strategies
tailored for time-lapse data has been proposed regarding the
issues like repeatability, computation efficiency (Yang et al.,
2012) and local minima (Watanabe et al., 2005; Denli and
Huang, 2009; Yang et al., 2011). Traditional FWI requires
low frequency data and large survey offsets to invert for the
low wavenumber velocity model (Virieux and Operto, 2009).
However, seismic surveys with large offsets are expensive and
not economical when the region of interest is local and rel-
atively small. In addition, FWI results are more like those

of a least-squares migration with small-offset reflection data
because the survey does not have enough constraints on the
model from different angles to estimate the low-wavenumber
structure and so find only the reflectivity. Image domain meth-
ods, often involving velocity analysis, have been proposed to
obtain the low wavenumber part of the velocity model from
reflection data (Sun and Symes, 2012; Biondi and Almomin,
2012). These methods are usually computationally heavier be-
cause they require the calculation of angle gathers.

In the time-lapse setting, we assume the subsurface geology
structure does not change dramatically over the period of sur-
veys. For example, the physical displacement of the reservoir
boundaries caused by compaction may be only a fraction of a
sampling interval of the image. Based on this assumption, the
successive images of the reservoir should illuminate similar ar-
eas at nearly identical locations if correct velocity models are
provided.

In this paper, we present an image-domain wavefield tomogra-
phy (IDWT) method specialized for time-lapse reservoir mon-
itoring. Baseline surface survey data are used in a standard
waveform inversion or velocity analysis to obtain a baseline
model. Migration images for both baseline and time-lapse
data can be produced based on the baseline model. With the
assumptions above, the image difference should be primar-
ily caused by changes in the velocity. Dynamic image warp-
ing (Hale, 2013) is used to measure the image difference in a
way that is robust to cycle skipping. By minimizing the warp-
ing function, we invert for the velocity changes iteratively with
the adjoint method (Plessix, 2006). In this paper, the theory
and workflow of this approach are described. A synthetic ex-
ample is used to demonstrate its capability.

THEORY

4D image domain wavefield tomography can be considered as
the counterpart of full waveform inversion. The cost function
here can be written as the L-2 norm of the “distance” between
two images. The simplest form is to take the difference be-
tween two images:

E(m) =
1
2

∫
x

∫
z

|I1(x,z)− I0(x,z)|2, (1)

where I0 is the baseline image and I1 is the time-lapse image.
x and z are spatial coordinates. We derive all the equations
here in 2D for simplicity, but the extension to 3D is straight-
forward. This cost function has the same drawback as the tra-
ditional FWI cost function. When the image difference is too
large (> half wavelength in the reflector’s normal direction),
the cycle skipping effect makes the cost function insensitive
to local model perturbations. As described by Hale (2013), a
migration image based on the incorrect velocity can be consid-
ered as a warped version of the true image based on the cor-
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wavefield tomography with image warping

rect velocity. In time-lapse applications, the time-lapse image
based on the baseline velocity is a warped version of the base-
line image. For images with reflection data, we assume most
of the warping is vertical. The amount of vertical warping can
be calculated by solving an optimization problem. Specifically
we compute

w(x,z) = arg min
l(x,z)

D(l(x,z)) (2)

where

D(l(x,z)) =
∫
x

∫
z

(I1(x,z)− I0(x,z+ l(x,z)))2dxdz (3)

We use the dynamic warping algorithm (Hale, 2013) to solve
for the warping function w(x,z).

Since the warping function should decrease consistently as I1
becomes closer to I0, we use the L-2 norm of w(x,z) as the cost
function

E(m) =
1
2

∑
xs

∫
x

∫
z

|w(x,z,xs)|2dxdz (4)

and invert for velocity by minimizing E(m) with a gradient-
based method.

To calculate the gradient G, we use an adjoint method. The
derivation is similar to the formula in differential semblance
optimization (DSO) (Plessix, 2006). The gradient can be writ-
ten as a correlation between wavefields

G =−(< ∂ 2λs(t)
∂ t2 ,us(t)>+<

∂ 2λr(t)
∂ t2 ,ur(t)>) (5)

where us(t) and ur(t) are source and receiver fields used for
imaging, and λs(t) and λr(t) are the associated adjoint wave-
fields respectively, and <> is the inner product operator in
time. The adjoint sources for λs(t) and λr(t) are:

ds(x,z, t) = α(x,z)∗ur(t) (6)

and
dr(x,z, t) = α(x,z)∗us(t) (7)

in which

α(x,z)=
w(z)∗ ∂ I0(z+w(z))

∂ z

(
∂ I0(z+w(z))

∂ z )2− ∂ 2I0(z+w(z))
∂ z2 (I1(x,z)− I0(x,z+w(z)))

(8)
A detailed derivation is presented in Yang et al. (2013). The
implementation of the inversion process consists of the follow-
ing steps:

given a baseline velocity model m0, and a baseline migration
image I0,

(i) for each shot, compute the migration image with time-lapse
data based on velocity model mi

(ii) compute the vertical shifts w(x,z) using dynamic warping

(iii) compute the adjoint wavefields λs,λr, and gradient G

(iv) update the velocity model with the nonlinear conjugate
method using the gradient G∗

(v) remigrate time-lapse data with updated model mi+1, and
calculate the cost function E(m)

(vi) if E(m) is smaller than a preset value, stop iterating; oth-
erwise, go to step(ii)

SYNTHETIC EXAMPLE

We use a two-layer acoustic model to demonstrate how this ap-
proach works. The density model has two discontinuities. The
baseline velocity model is constant (vp=3000m/s). The time-
lapse model change is shown in Figure 2. It is a Gaussian-
shaped velocity increase, with a maximum value of 800m/s.
We place 300 receivers (blue triangles in Figure 1) and 5 sources
(red stars in Figure 1) on the surface to generate the datasets.The
source is a Ricker wavelet with a center frequency of 25 Hz.
In this synthetic example, we assume the baseline model is
known. Both conventional FWI and IDWT are applied for the
time-lapse data. Their performances are compared to show the
advantage of IDWT for model recovery and convergence.
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Figure 1: The two-layer density model for both baseline and
time-lapse. Red Stars denote the locations of the shots, and
blue triangles denote the receiver locations.
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Figure 2: Difference in the P-wave velocities between baseline
and time-lapse surveys. Maximum velocity increase is 800m/s.

IMAGING AND WARPING

Reverse time migration (RTM) is utilized to produce all the
images during the inversion. The imaging condition is

I =

T∫
t=0

< us(t),ur(t)> dt. (9)
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wavefield tomography with image warping

The baseline image and initial time-lapse image are shown in
Figure 3(a) and Figure 3(b).
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Figure 3: (a) The baseline image I0 obtained using one shot
gather and the baseline model. (b) The time-lapse image I1
obtained using one shot gather and the baseline model.
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Figure 4: The image warping function w(x,z) calculated from
Figure 3(a) and 3(b). Units on the color scale are image points.

The position of the deeper reflector in the time-lapse image
(Fig 3(b)) is shifted vertically due to the velocity change in Fig-
ure 2. We compute w(x,z) using the dynamic image warping
algorithm (Hale, 2013) to describe how much I1 is shifted from
I0, as shown in Figure 4. The maximum shift is 4 grid points
(i.e. 40 meters). As in Equation 8, w(x,z) is used to calculate
a spatial weighting function α(x,z), to mask the wavefields us
and ur to form adjoint sources (Equation 6 and 7).

INVERSION RESULTS COMPARISON

Figure 5 shows the velocity model change recovered from IDWT.
The inverted anomaly is centered at the correct location, but is
smeared vertically due to the acquisition geometry. But the

vertical smearing is bounded by the reflectors. If any pertur-
bation occurs above the first reflector, the entire image will be
shifted. IDWT will correct this shift by reversing that pertur-
bation. Some of the changes are positioned along the ray-path
due to limited source/receiver coverage. Within the area of the
inverted anomaly, the amplitude is not correctly distributed,
and the maximum amplitude of change is only 50% of the true
value. We expect this to be improved by adding more shots.

Although the inverted velocity is not perfect, the time-lapse
image based on it (Fig 6) is precise enough to put reflectors
at the same locations as in the baseline image (Fig 3(a)). The
model from IDWT has the correct first-order kinematics, and
is a good starting model for FWI. Figure 7 shows the result
of a standard FWI based on the model from IDWT. Both the
amplitude of the anomaly, and the distribution of the velocity
are improved as FWI corrects the higher order kinematics and
dynamics.
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Figure 5: The velocity changes inverted by IDWT.
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Figure 6: The time-lapse image obtained using one shot gather
and the model inverted with IDWT.
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Figure 7: The velocity changes resolved by FWI after IDWT
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wavefield tomography with image warping
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Figure 8: The velocity changes inverted by a standard FWI
starting from the baseline model.

A standard FWI is also performed starting from the correct
background constant velocity model and the correct density
model. Figure 8 shows the final result. The inversion gives
poor recovery of the anomaly because of several issues. First,
the velocity change is large enough to cause cycle skipping in
the data domain. Second, FWI with this narrow-offset survey
geometry, reduces to least-squares migration. The volumetric
velocity change is barely resolved. Instead, a reflector that
does not exist in the true model, is generated to fit the data.
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Figure 9: Convergence curves of IDWT (red) and FWI after
IDWT (blue).

DISCUSSION

From a computational point of view, the image domain wave-
field tomography requires two wavefield extrapolations for each
migration. With the same wave equation solver, it takes twice
as much time as FWI for each iteration. However, it is not nec-
essary to simulate the full wavefield to form the images. The
image warping cost function only requires information about
the kinematics, which is robust when the accuracy of the simu-
lated waveform amplitudes are limited. In contrast, traditional
FWI needs a high-quality simulation so that the comparison
between waveforms is reliable.

Although the apparent calculation time is doubled compared
to FWI, IDWT appears to converge very fast (less than 10 it-
erations). We compare the convergence curves of IDWT, FWI
after IDWT and FWI-only in Figure 9. IDWT converges much
faster than the FWI based on the IDWT result. Therefore, to
resolve the velocity anomaly, the actual computation of IDWT
is affordable and does not dominate the cost of the overall pro-
cess. The FWI-only case plateaued after several iterations.
As discussed above, the cycle skipping effect makes the cost

function not sensitive to the velocity updates. Ideas similar
to image-warping can be implemented in the data domain to
avoid cycle-skipping. However, with reflection geometries,
FWI fails to invert for volumetric changes in velocity, and the
result tends to be like that of a least-squares migration. Ma and
Hale (2013) have successfully overcome this problem.

In time-lapse inversions, we are interested in the relative changes
between the surveys at different times. However, the residuals
due to the uncertainty in the baseline inversion are likely to
contaminate the final result. Tailored FWI schemes have been
developed to suppress these noises (Denli and Huang, 2009;
Yang et al., 2011). In IDWT, the errors in the baseline model
are internally taken into account in the baseline migration. As
the time-lapse images match the baseline ones, the only per-
turbation in the velocity model is in the kinematic difference
between time-lapse and baseline datasets.

In addition, the signal to noise ratio in migration images is
lower than that in data because of stacking. IDWT tries to fit
the images where the noise is suppressed. Another concern
for time-lapse data, is the repeatability of surveys. In general,
the shot and receiver locations are not identical between sur-
veys even for high-quality ocean bottom cables. Moreover,
after the initial large survey for exploration, specialized lo-
cal surveys for monitoring are more economical and efficient.
IDWT has no constraints on the survey geometry. As long as
the time-lapse data illuminates an area of interest that is also
well-imaged with the baseline survey, IDWT can update the
local velocity.

As with most tomography methods, IDWT smears the model
along ray-paths. More reflectors in the model provide more
constraints on the inversion. The vertical resolution of IDWT
is at least bounded by the reflector spacing (i.e. the anomaly
will not smear across reflectors). For smaller anomalies (e.g.,
velocity changes caused by overpressure), IDWI can be im-
proved by increasing survey offsets as is the case for most
tomography methods. IDWI results can also be used as the
starting model for FWI to refine the model or invert for other
parameters such as density and S-wave velocity.

CONCLUSIONS

We have proposed a time-lapse wavefield tomography method
in the image domain for reflection data. The warping between
baseline and time-lapse images is used as a cost function, which
is sensitive to smooth velocity perturbations, and robust against
cycle-skipping effects. The adjoint method is applied to calcu-
late the gradient and the nonlinear conjugate gradient method
is used to update the model iteratively. The method is not lim-
ited by discrepancies between survey geometries. The recov-
ery of the volumetric velocity change with IDWT plus FWI is
markedly better than with full waveform inversion alone.
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