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ABSTRACT

Time-lapse seismic data are widely used for monitoring
subsurface changes. A quantitative assessment of how res-
ervoir properties have changed allows for better interpreta-
tion of fluid substitution and fluid migration during
processes such as oil and gas production and carbon seques-
tration. Full-waveform inversion (FWI) has been proposed
as a way to retrieve quantitative estimates of subsurface
properties through seismic waveform fitting. However, for
some monitoring systems, the offset range versus depth
of interest is not large enough to provide information about
the low-wavenumber component of the velocity model. We
evaluated an image domain wavefield tomography (IDWT)
method using the local warping between baseline and mon-
itor images as the cost function. This cost function is sensi-
tive to volumetric velocity anomalies, and it is capable of
handling large velocity changes with very limited acquisi-
tion apertures, where traditional FWI fails. We described
the theory and workflow of our method. Layered model ex-
amples were used to investigate the performance of the al-
gorithm and its robustness to velocity errors and acquisition
geometry perturbations. The Marmousi model was used to
simulate a realistic situation in which IDWT successfully
recovers time-lapse velocity changes.

INTRODUCTION

Time-lapse seismic monitoring is often applied for reservoir man-
agement in the oil industry to obtain information about reservoir
changes. It helps identify bypassed oil to be targeted for infill drill-
ing, which extends the economic life of a field (Lumley, 2001). It is
also capable of monitoring the progress of fluid fronts, providing
information for injection optimization in enhanced oil recovery

and long-term fluid storage such as carbon sequestration (Bickle
et al., 2007). Generally, one baseline survey and subsequent mon-
itoring surveys are acquired over time. Analysis and comparison of
the data sets provide an estimate of changes in seismic velocity and
mass density. These changes are related to changes in dynamic res-
ervoir properties such as pore pressure and fluid saturation (Dadash-
pour et al., 2008), which are important in reservoir simulation and
interpretation.
For a time-lapse seismic data set, information about the changes

in model parameters in the target zone can be categorized into two
groups: amplitude changes and time shifts. Amplitude changes
could be induced by new scattering in the target interval or
differences in reflectivity at the interfaces. Time shifts are the re-
sponse to a physically shifted geologic interface (e.g., a compacting
reservoir) or a velocity perturbation along the signal’s raypath. To
better link the changes in measured signals to inferred reservoir
responses, it is essential to quantify the changes from different
mechanisms. In some time-lapse seismic analysis, the time shift in-
formation is omitted because the monitor data or images are aligned
with the baseline to compare the amplitudes. In other studies, time
shifts picked at certain horizons are used to study the reservoir
velocity changes or the strain field changes above the reservoir
(Landrø and Stammeijer, 2004; Barkved and Kristiansen, 2005).
However, these analyses are conducted on poststack data, which
have already lost some information during the stacking process.
In this study, we focus primarily on time shifts in prestack data
and velocities in model space. We do not consider amplitude
changes, which can be better inverted or interpreted after the inver-
sion for a corrected time-lapse velocity model.
To recover the seismic velocities, full-waveform inversion (FWI)

(Tarantola, 1984; Virieux and Operto, 2009) has been applied to
individual surveys. The application of FWI to time-lapse data seems
straightforward; however, in practice it is constrained by the survey
design, data quality, and the nonlinear nature of FWI. Inversion
strategies tailored for time-lapse data have addressed issues such
as repeatability, computation efficiency (Yang et al., 2012), and
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local minima (Watanabe et al., 2005; Denli and Huang, 2009; As-
naashari et al., 2011; Yang et al., 2011). Traditional FWI requires
low-frequency data and large survey offsets to invert for the low-
wavenumber component of the velocity model (Virieux and Operto,
2009). However, seismic surveys with large offsets are expensive
particularly when the region of interest is relatively small. Small-
offset reflection data do not provide constraints on the model from
a wide enough range of different angles to allow for the estimation
of low-wavenumber structures. With small offsets, FWI functions
more like least-squares migration, which only finds reflectivity. Im-
age-domain methods, often involving velocity analysis, have been
proposed to obtain the low-wavenumber part of the velocity model
from reflection data (Biondi and Almomin, 2012; Sun and Symes,
2012). Some image-domain methods are computationally expen-
sive because they require the calculation of angle gathers or offset
gathers, which require many sources and receivers. These methods
are more suitable for initial model building. Shragge et al. (2013)
extend an image-domain tomography method to 4D; however, the
inverted velocity changes can be smeared.
When a seismic reflection is shifted in time, there is ambiguity as

to whether the reflector has shifted or there is a velocity change
above the reflector. However, in many cases, the changes in the
depths of the structures are not expected to be as significant as
the depth shifts of the reflectors in the images due to velocity
changes. For example, the physical displacement of the reservoir
boundaries caused by compaction may be only a fraction of a sam-
pling interval of the migration image (e.g., half a meter per year in
the North Sea [Barkved and Kristiansen, 2005]). However, volu-
metric strain in the overburden due to compaction may cause
changes in its seismic velocities. Velocity in the reservoir itself
might also change due to depletion or fluid substitution. In cases
such as CO2 sequestration, large amounts of fluid are injected into
the subsurface, without significant changes in pore pressure. Com-
pared to physical structure changes, velocity changes are expected
to be the dominant effect on time-lapse images from these settings
(Arts et al., 2004). In this paper, we assume that seismic reflectors
do not shift over the period during which time-lapse surveys are
collected. We also assume that the waveforms reflected from inter-
faces in the targeted area do not change significantly. Based on this
assumption, successive acquisitions that illuminate similar areas
should produce similar images without depth shifts if correct veloc-
ity models are used.
In this paper, we present an image-domain wavefield tomography

(IDWT) method specialized for time-lapse reservoir monitoring.
With a baseline velocity model, migrated images for baseline
and monitor data can be produced with a reverse time migration
(RTM) algorithm. With the assumptions above, depth differences
between images should be primarily caused by time-lapse changes
in the velocity and not by physical changes in reflector position.
Dynamic image warping (Hale, 2013) is used to measure the image
shifts in a way that is robust to cycle skipping and amplitude
differences between images. By minimizing the warping function
(the shifts between baseline and monitor images), we invert for
velocity changes iteratively using the adjoint-state method (Plessix,
2006). The inversion is only sensitive to low-wavenumber velocity
perturbations that control wavefield kinematics. The inverted veloc-
ity changes are found to be localized between reflectors, which aids
interpretation of fluid migration such as gas leakage. Yang et al.
(2014) apply this method to time-lapse data sets from a CO2

injection field. In this paper, we describe the theory and workflow
of the IDWTapproach. Synthetic examples are used to demonstrate
its capability and limitations. The robustness of the method to base-
line velocity errors and survey geometry nonrepeatability is also
investigated.

THEORY

Iterative inversion methods such as FWI are designed to estimate
model parameters by fitting observed data with simulated data. In
the time-lapse IDWT method, the model parameters are seismic
velocity changes and the observed data are the migrated images that
are constructed from baseline and monitor seismic surveys. We es-
timate velocity changes by matching monitor migrated images with
baseline migrated images. The cost function here can be written as
the L-2 norm of some measure of dissimilarity between two images.
The simplest measure is the amplitude difference:

EsubtractðmÞ ¼ 1

2

X
xs

Z
x

Z
z

jI1ðx; z; xsÞ − I0ðx; z; xsÞj2dxdz;

(1)

where I0 is the baseline image, I1 is the monitor image, x and z are
spatial coordinates, and xs is the source index. We derive all the
equations here in 2D for simplicity, but the extension to 3D is
straightforward with one additional integral over the third spatial
dimension. This cost function has the same drawback as the tradi-
tional FWI cost function. When reflector shifts are too large (> a
half-wavelength, measured normal to the reflector), cycle skipping
makes the cost function insensitive to local velocity perturbations.
The direct subtraction I1 − I0 also causes problems when the im-
ages have different amplitudes. These differences could be related
to effects other than velocity perturbations. In these cases, even
if the velocity model is correct, the cost function may not be
minimized.
As described by Hale (2013), a migration image I based on the

incorrect velocity can be considered a warped version of the true
image ~I based on the correct velocity. In equation 1, hðx; zÞ and
lðx; zÞ are warping functions that specify how much the image point
at ðx; zÞ in ~I is shifted from the same image point in I in the hori-
zontal (h) and vertical (l) directions:

Iðx; zÞ ¼ ~Iðxþ hðx; zÞ; zþ lðx; zÞÞ: (2)

Here, we assume that the monitor image based on the baseline
velocity model is a warped version of the baseline image. For im-
ages with reflection data, vertical and lateral shifts can be measured
(Cox and Hatchell, 2008; Hale et al., 2008). In this study, we only
measure the vertical warping lðx; zÞ for simplicity. The amount of
vertical warping can be calculated by solving an optimization prob-
lem. Specifically, we compute

wðx; zÞ ¼ arg min
lðx;zÞ

Dðlðx; zÞÞ; (3)

where

Dðlðx; zÞÞ ¼
Z
x

Z
z

ðI1ðx; zÞ − I0ðx; zþ lðx; zÞÞÞ2dxdz: (4)
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We use the dynamic warping algorithm (Hale, 2013) to solve the
optimization problem above for the warping function wðx; zÞ.
Because the warping function decreases in magnitude as I1 and

I0 become well aligned, we use the L-2 norm of wðx; zÞ as the cost
function:

EðmÞ ¼ 1

2

X
xs

Z
x

Z
z

jwðx; z; xs; mÞj2dxdz; (5)

where m is the squared slowness used for migrating monitor data
and xs is the source index. We invert for velocity 1ffiffiffi

m
p by minimizing

EðmÞ with a gradient-based method.
To calculate the gradientG, we use an adjoint-state method (Ples-

six, 2006). In FWI, the gradient is calculated by crosscorrelating the
forward-propagated source wavefield and the back-propagated
residual wavefield (the adjoint wavefield). In IDWT, the gradient
can be similarly written as a correlation between wavefields:

Gðx; zÞ ¼ −
X
xs

ZT

t¼0

�
∂2λsðx; z; t; xsÞ

∂t2
usðx; z; t; xsÞ

þ ∂2λrðx; z; t; xsÞ
∂t2

urðx; z; t; xsÞ
�
dt; (6)

where usðx; z; t; xsÞ and urðx; z; t; xsÞ are the source and receiver
fields from forward and backward propagation, respectively. The
associated adjoint wavefields are λsðx; z; t; xsÞ and λrðx; z; t; xsÞ.
The adjoint wavefields λ are obtained by solving the wave equation:

m
∂2λðx; z; tÞ

∂t2
− Δλðx; z; tÞ ¼ d; (7)

where m is the squared wave slowness and d is the adjoint source.
The adjoint sources for solving for λsðx; z; t; xsÞ and λrðx; z; t; xsÞ
are, respectively,

dsðx; z; t; xsÞ ¼ αðx; z; xsÞurðx; z; t; xsÞ (8)

and

drðx; z; t; xsÞ ¼ αðx; z; xsÞusðx; z; t; xsÞ; (9)

in which

αðx;z;xsÞ

¼ wðx;z;xsÞ∂I0ðx;zþwðx;z;xsÞ;xsÞ
∂z�

∂I0ðx;zþwðx;z;xsÞ;xsÞ
∂z

�
2−∂2I0ðx;zþwðx;z;xsÞ;xsÞ

∂z2 ðI1ðx;z;xsÞ−I0ðx;zþwðx;z;xsÞ;xsÞÞ
:

(10)

The derivation is similar to the formula in differential semblance
optimization (Plessix, 2006). The details are presented in Appen-
dix A. The wavefield mask αðx; z; xsÞ is oscillatory due to the term
∂I0ðx;zþwðx;z;xsÞ;xsÞ

∂x in the numerator. The denominator in αðx; z; xsÞ
acts as an amplitude normalizer; in practice, we add a water-level
term to the denominator to avoid dividing by zero. The warping
function wðx; z; xsÞ tells us where α should be nonzero, and it de-
termines the sign of the adjoint source, which determines the sign of

the velocity update. The implementation of the inversion process
consists of the following steps:

1) given a baseline velocity model m0, and a baseline migration
image I0

2) for each shot xs, migrate the monitor data with the velocity
model m0 used to produce I1ðx; z; xsÞ

3) compute the vertical shifts wðx; z; xsÞ using dynamic warping
4) evaluate the cost function EðmÞ after the summation over shots

xs, stop (if small enough) or go to the next step
5) for each shot xs, compute the adjoint wavefields λs, λr, and the

partial gradient Gðx; z; xsÞ
6) sum Gðx; z; xsÞ over all shots to form the gradient Gðx; zÞ
7) update the velocity model with Gðx; zÞ to get miþ1

8) remigrate the monitor data with the updated model miþ1 and go
to step 2.

EXAMPLES USING SYNTHETIC DATA

In this section, wewill use synthetic data to show how the method
works and investigate its performance under different scenarios.
First, a simple three-layer model is used to demonstrate IDWT’s
ability to recover low-wavenumber velocity changes. The perfor-
mance of IDWT with respect to the number of shots is tested with
the same model. A model with six layers is used to study the relation
between IDWT resolution and the layer spacing. The robustness of
IDWT to errors in the baseline velocity model is tested with two
cases in which one large and one small Gaussian velocity errors
are introduced. The robustness of IDWT to source-receiver geometry
discrepancies between surveys is investigated for correct and incor-
rect baseline velocity models. Finally, the Marmousi model is used
to show how IDWT performs for a complicated velocity structure.

Three-layer model

The three-layer model has a constant velocity (VP ¼ 3000 m∕s)
but a different density in each layer (Figure 1a). A velocity anomaly
is placed in the middle of the time-lapse model as shown in
Figure 1b. The shape of the anomaly is Gaussian with a maximum
velocity increase of 800 m∕s. We place 300 receivers (blue triangles
in Figure 1a) at an interval of 10 m, and five sources (red stars in
Figure 1a) at an interval of 600 m on the surface. The source is a
Ricker wavelet with a center frequency of 25 Hz. We use a finite-
difference acoustic wave equation solver to generate the data sets.
In this example, we assume that the constant baseline velocity
is known.

Imaging and warping

RTM (Baysal et al., 1983; McMechan, 1983) is used to produce
all the migration images during the inversion. The baseline and ini-
tial monitor images obtained using a single shot gather (the third
shot in Figure 1a) are shown in Figure 1c and 1d, respectively.
The position of the deeper reflector in the monitor image (Figure 1d)
is shifted vertically due to the velocity change in Figure 1b. We
compute wðx; zÞ using the dynamic image warping algorithm (Hale,
2013) to describe how much I1 is shifted from I0, as shown in
Figure 2. The maximum vertical shift is four grid points (40 m).
As in equation 10, wðx; zÞ is used to calculate a spatial weighting

Image warping for time-lapse IDWT WA143
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function αðx; z; xsÞ, to mask the wavefields us and ur to form ad-
joint sources (equations 8 and 9).

Inversion results comparison

Figure 3a shows the velocity model change recovered from
IDWT with the five sources shown in Figure 1a. The recovered
anomaly is centered at the correct location, but it is smeared ver-
tically due to the acquisition geometry. This vertical smearing is
bounded by the two reflectors. If the inversion attempts to put
any perturbation above the first reflector, the entire image will
be shifted. IDWT will subsequently reduce this shift by reversing
that perturbation. Some of the changes are positioned along the ray-
paths due to limited source and receiver coverage. Within the area of

the recovered anomaly, the amplitude is not correctly distributed,
and the maximum velocity increase is only 50% of the true value.
Although the inverted velocity is not perfect, the monitor mi-

grated image based on it (Figure 3b) shows reflectors at the same
locations as in the baseline image (Figure 1c). The model from
IDWT has the correct background kinematics, and it is a good
starting model for FWI. Figure 3c shows the velocity change deter-
mined with the application of a standard FWI (Tarantola, 1984) for
the same monitor data using the velocity model obtained from
IDWT as a starting model. The amplitude of the anomaly and
the distribution of the velocity are improved as FWI inverts more
phase and amplitude changes.
For comparison, we compute a standard FWI on the monitor data

starting from the correct baseline velocity and density models.
Figure 3d shows the result. The inversion gives poor recovery of
the velocity anomaly because of several issues. First, the velocity
change is large enough to cause cycle skipping in the data domain.
Second, FWI with this narrow-offset survey geometry reduces to
least-squares migration, so that the volumetric velocity change is
barely resolved. Instead, a reflector that does not exist in the true
velocity model is generated to fit the data.
Figure 4 shows cost-function curves for IDWT, FWI, and FWI

after IDWT. IDWT converges within 10 iterations, while FWI con-
verges much slower, after IDWT and for FWI alone. The cost func-
tion for FWI alone plateaus after 10 iterations because the residual is
insensitive to velocity perturbations, due to cycle skipping. FWI
after IDWT converges with a lower cost than does FWI alone,
but remarkably slower than does IDWT. However, IDWT requires

Figure 1. (a) The three-layer density model for baseline and mon-
itor surveys. Red stars denote the locations of the shots, and blue
triangles denote the receiver locations. (b) Differences in the P-wave
velocities between baseline and monitor surveys. The maximum
velocity change is 800 m∕s. (c) The baseline image I0 obtained us-
ing one shot gather and the constant velocity model. (d) The mon-
itor image I1 obtained using one shot gather and the constant
velocity model. The center part of the second reflector is vertically
shifted due to the absence of the velocity anomaly in (b).

Figure 2. The image warping function wðx; zÞ calculated from Fig-
ure 1c and 1d. Units on the color scale are meters. Positive values
indicate upward shifts. The maximum warping is four grid points
(i.e., 40 m).

Figure 3. (a) The velocity changes found by IDWT with five
sources. The anomaly is correctly positioned. However, the limited
aperture of the acquisition makes the waves travel primarily in the
vertical direction, so the recovered velocity anomaly is smeared ver-
tically. (b) The monitor migration image obtained using one shot
gather and the velocity model inverted by IDWT. The second re-
flector is correctly positioned. (c) The velocity changes refined
by FWI after IDWT. The amplitude differences and subtle phase
shifts between data and simulation are minimized to resolve the fine
details in the velocity model. FWI has significantly reduced the ver-
tical smearing observed in Figure 3a. (d) The velocity changes ob-
tained with standard FWI applied to the monitor data, starting from
the baseline constant background velocity model. The Gaussian
anomaly is barely visible. An artificial reflector is erroneously cre-
ated to account for data differences. This failure is due to the com-
bined effects of cycle skipping and limited survey geometry.
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four wavefield calculations to obtain the gradient in each iteration,
and two wavefield calculations are required for one migration.
Assuming each wave propagation calculation takes time T and each
line search takes 3 migrations, the actual computational cost of
IDWT is 10 times that for computing N wavefields, where N is
the number of IDWT iterations. Similarly because it requires three
forward models per line search, one FWI iteration takes 5T. In this
example, to get the final model in Figure 3c, we used 10 IDWT
iterations and 20 FWI iterations. Thus, the total computation time
is 200T, of which 50% is used in IDWT.

Multilayer model

As shown in the three-layer model example, the smearing of the
time-lapse velocity change is bounded by the reflectors. We expect
that smaller reflector spacing will lead to a better determined
anomaly. To investigate this, we use a multilayer model to simulate

the case in which time-lapse changes span several layers. A constant
velocity (VP ¼ 3000 m∕s) is used for the baseline model. The time-
lapse velocity model is the same as that in Figure 1b. A six-layer
density model as shown in Figure 5a is used to generate reflections.
Layer thicknesses in the center of the model are smaller than the size
of the velocity anomaly in Figure 1b.
Figure 5 shows the velocity changes resolved by IDWT using

different numbers of shots. Only one single shot placed in the center
on the surface is used in Figure 5b. Compared with the results in
Figure 3a, the anomaly is much better constrained vertically by the
second and fourth reflectors in the model. Correspondingly, the
magnitude of the velocity anomaly is better recovered; 10 and
20 shots are used evenly spaced at intervals of 265 and 125 m
in Figure 5c and 5d, respectively. The shape and relative magnitude
distribution are improved with additional shots.

Baseline velocity errors

For all the previous examples, we assumed that the baseline
model was exactly known. In practice, it is more likely that the base-
line velocity model we build is inaccurate. To study the robustness
of IDWT to errors in the baseline velocity, we use the model in
Figure 6a, which contains a Gaussian-shaped low velocity zone,

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Iteration number

N
or

m
al

iz
ed

 c
os

t

 

 
IDWT
FWI after IDWT
FWI only

Figure 4. Cost function curves for IDWT, FWI after IDWT, and
FWI only. The cost functions are normalized by their values before
the first iterations. IDWT converged within 10 iterations. FWI after
IDWT converged much slower. The cost function of FWI starting
from the constant velocity plateaued after 10 iterations.

Figure 5. (a) The six-layer baseline and time-lapse density model.
Layers in the center are smaller in thickness than the size of time-
lapse velocity anomaly (white circle). Panels (b-d) show the IDWT
results with one shot, 10 shots, and 20 shots, respectively. As we
include more shots, the amplitude distribution within the anomaly is
corrected. The vertical smearing is well constrained by the reflector.
The maximum velocity change is closer to the true value as the
changes are confined to a smaller area.

Figure 6. (a) True baseline velocity model with a Gaussian
anomaly with peak velocity change of 200 m∕s. We assume the
anomaly is not known, and we use a constant velocity model for
the baseline migrations. (b) True time-lapse velocity changes with
peak value of 200 m∕s. (c) True time-lapse velocity model I with
two Gaussian anomalies (a plus b). (d) The time-lapse velocity
changes found using IDWT. (e) True time-lapse velocity model
II. We increase the peak amplitude of the Gaussian anomaly in
the baseline velocity model to 800 m∕s, and we use the same
time-lapse velocity changes as in (b). (f) The time-lapse velocity
changes inverted by IDWT. The shape of the anomaly is distorted
because of the large error in the baseline velocity model, but the
basic location and amplitude are preserved.
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as the true baseline velocity model. We assume the anomaly is not
resolved by the baseline velocity model building and so a constant
velocity model is used for the baseline migration. We use the den-
sity model in Figure 5a with 20 shots evenly spaced at an interval of
125 m on the surface to generate synthetic data. The true time-lapse
velocity model (Figure 6c) has an additional high-velocity Gaus-
sian-shaped anomaly, which is the net change between the baseline
and time-lapse models (Figure 6b). The peak magnitude of both
anomalies is 200 m∕s.
Figure 6d shows the IDWT result obtained when using 20 shots.

Compared with the result obtained using the correct baseline model
(Figure 5d), the resolved time-lapse anomaly maintains the same
quality in shape and magnitude. More importantly, there are no
negative velocity changes apparent in the result. The baseline veloc-
ity model error (the negative Gaussian-shaped anomaly) is not car-
ried over to the time-lapse inversion. In other words, IDWT detects
only the relative changes in the models. A close scrutiny of
Figures 5d and 6d reveals that the shape of the resolved change
is slightly distorted because of the kinematic error induced by
the unknown Gaussian anomaly in Figure 6a. We expect the distor-
tion to get stronger with bigger errors in the baseline velocity model.
We test this with the model shown in Figure 6e, in which we in-
crease the maximum amplitude of the low-velocity error in the base-
line model to 800 m∕s. The IDWT result with 20 shots, shown in
Figure 6f, is severely distorted in shape, but the amplitude and po-
sition are still accurately recovered.

Source geometry nonrepeatability

Seismic survey repeatability is a key factor in achieving success-
ful time-lapse monitoring. One common issue is the discrepancy of
source-receiver geometry between surveys. A small deviation of the
source position in the monitor survey from that of the baseline can
lead to large differences in waveforms, which makes direct com-
parison between data sets difficult. Time-lapse FWI methods, such
as double-difference waveform tomography, which requires data
subtraction (Watanabe et al., 2005; Denli and Huang, 2009), must
carefully coprocess the baseline and monitor data sets. In IDWT,
instead of data, we compare images, which are less sensitive to shot
position deviations. With the correct velocity model, neighboring
sources should give very similar images. As a result, when they
are migrated with the same baseline velocity, differences between
a monitor image for shot position xþ δx and a baseline image for
shot position x should still relate to time-lapse velocity changes. We

expect IDWT to be robust to this type of source geometry difference
between surveys.
We employ the baseline velocity models used in previous exam-

ples, with the constant velocity, weak Gaussian anomaly (200 m∕s),
and strong Gaussian anomaly (800 m∕s). The maximum value of
the time-lapse change is 200 m∕s. The density model is the same as
that in Figure 5a. For the baseline survey, 15 sources are evenly
spaced at an interval of 170 m, and 300 receivers are evenly spaced
at an interval of 10 m. For the monitor survey, we only consider
source positioning errors. Because IDWT is conducted with shot
gathers, the effects from receiver positioning errors should be neg-
ligible as long as they cover the same area. Two types of source
positioning errors are commonly observed in practice: random per-
turbations (e.g., limited global positioning system (GPS) precision)
and systematic perturbations (e.g., feathering effects in acquisition).
For random perturbations, we randomly perturbed each source

either one grid point left or one grid point right from its baseline
position. The grid spacing is 10 m in our tests, which is large com-
pared to position errors observed in some well-repeated surveys in
practice (Yang et al., 2013). In addition, position errors in reality
would not be uniformly �10 m. However, we do not expect this
to have a large effect on the results.
Figure 7 shows the IDWT results with different levels of baseline

velocity errors but with the same randomly perturbed source posi-
tions. There is no baseline velocity error in Figure 7a. The baseline
velocity models used in Figure 7b and 7c have Gaussian-shaped
errors of 200 and 800 m∕s peak value, respectively. The one-to-
one comparison among Figure 7a–7c and Figures 5d, 6d, and 6f
shows that the random source position perturbations have little ef-
fect on the performance of IDWT.
To study the effect of systematic perturbations, we move the

monitor survey source positions uniformly toward the right. Three
levels of shot position error are studied: δx equals 10, 20, and 50 m.
The monitor data sets are generated and migrated using the per-
turbed source locations. Figure 8a–8c shows the IDWT results with
the known constant baseline velocity model. The time-lapse veloc-
ity anomalies are resolved with the same quality in all three cases
with increasing shot positioning error. Artifacts near the sources re-
sult from illumination differences between baseline and monitor sur-
veys. As we discussed for the three-layer model, when the shot
positions are the same in both surveys, the smeared updates near
the sources are diminished by iteratively correcting the image of
the shallower reflector. However, when the shot positions are differ-

ent, as illustrated in Figure 9, parts of the monitor
image have no corresponding parts in the baseline
image (dashed circles). As a result, part of the
velocity update cannot be constructed because
the unconstrained parts of the image marked
by arrows in Figure 9 are insensitive to that veloc-
ity change. At greater depths, this effect is miti-
gated by stacking shots, but the effect of stacking
is weak near the sources. If the targeted area is
deep in the subsurface, these artifacts will not af-
fect the interpretation. If the monitor image is
compared to the entire image formed by all the
baseline shots, this effect will be eliminated
because the shadowed areas in Figure 9 will
be covered by baseline images of neighboring
shots.

D
ep

th
 (

km
)

Baseline velocity error: Velocity (m/s)0 m/s

a)

1 2 3

0

0.5

1

1.5

Ground distance (km)

200 m/s

b)

1 2 3

0

0.5

1

1.5

800 m/s

 

 

c)

1 2 3

0

0.5

1

1.5
−100

0

100

Figure 7. This figure shows robustness tests of IDWT to random source positioning
errors and baseline velocity errors. The sources in the monitor survey are randomly
shifted �10 m from their baseline positions. The baseline velocity error for each case
has a maximum value of 0 (a), 200 (b), and 800 m∕s (c). Compared to the case where
there is no mispositioning in Figures 5d, 6d, and 6f, the random source positioning error
has little effect on the performance of IDWT.
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Figure 8d–8f shows the IDWT results with a weak Gaussian
velocity error (200 m∕s) in the baseline model. As the shot posi-
tioning error increases, the error induced by the incorrect baseline
velocity model, marked by black circles, gets stronger. The princi-
ple that neighboring shots should give similar images is violated
because the baseline velocity is incorrect. As a result, differences
between baseline and monitor images are caused by the baseline
velocity errors and the time-lapse velocity changes. The difference
caused by baseline velocity error is bigger when two shots are fur-
ther apart. Accordingly, the velocity error in-
creases as the shot positioning error increases.
In addition, the velocity error is inverted with
a reverse sign because the monitor image is
aligned with the incorrect baseline image. For ex-
ample, if the low-velocity region in the baseline
model is unknown (i.e., not included in the
model for migration), the reflectors imaged by
a source that illuminates the anomaly will be
deeper than their true positions. Regardless of
the time-lapse changes, IDWT would assume
the baseline image is correct and perturb the
velocity to make monitor image reflectors
deeper, leading to a high-velocity update.
Figure 8g–8i shows the IDWT results with the

strong Gaussian velocity error (800 m∕s) in the
baseline model. As expected, the larger error in-
duces bigger false changes (located inside the
black circles) in the time-lapse inversions. In Fig-
ure 8i, the false changes already have the same
order of magnitude as the time-lapse changes
when the source positioning error is 50 m. In this
case, an interpretation would likely be affected
by the velocity error. However, an 800 m∕s
velocity error in the baseline model is significant,
and source positioning errors of 50 m are exces-
sive in a well-repeated 4D seismic survey. Based
on the tests shown in this section, we conclude
that for relatively large errors in the baseline
velocity model, and for random and systematic
source geometry discrepancies between surveys,
IDWT is robust and expected to be capable of delivering useful in-
version results.

Marmousi model

For a more realistic synthetic test, we apply IDWTusing the Mar-
mousi model (Versteeg, 1994). As shown in Figure 10a, only part of
the original Marmousi model with complicated geologic structures
is used to better simulate narrow-offset acquisition. Five shots
evenly spaced at an interval of 200 m (red stars) are used to generate
the synthetic data sets, and 400 receivers are deployed on the sur-
face at an interval of 5 m. Figure 10b shows the true time-lapse
velocity model with a velocity decrease in the layers at around
1900 m depth. The actual boundary of the velocity anomaly is out-
lined by the black dashed line. The density is constant throughout
the model.
We smooth the Marmousi model to generate the baseline model

for migration as shown in Figure 11a. Figure 11b shows the mi-
grated image with one shot gather of the baseline data sets. Due
to the limited aperture of the acquisition, some of the structures

(marked by arrows in Figure 11b) are not illuminated. The layers
in these areas are completely missing in the image. The reflectors
above and below the layer containing the time-lapse changes
(dashed line in Figure 11b) are clearly imaged.
The IDWT result obtained using these five shots is shown in

Figure 12b. The resolved anomaly is localized within the area en-
closed by the dashed line. The shape and amplitude of the anomaly
are well recovered. The true change, as shown in Figure 12a, has
small values near the boundary of the anomaly (dashed line). In

Figure 8. Robustness tests of IDWT against source positioning error plus baseline
velocity error. In the 3 × 3 plot, the monitor survey sources are systematically shifted
10, 20, and 50 m from their correct positions for each column, respectively. The baseline
velocity error for each row has maximum value of 0, 200, and 800 m∕s. Black dotted
circles mark the areas where false velocity changes are resolved due to the baseline
velocity error, which is at the same location as shown in Figure 6e.

Figure 9. Migrated images for one baseline shot and one shifted
monitor shot. Dotted lines show the wave paths along which veloc-
ities are updated. Portions of the monitor migrated image marked as
unconstrained image (dashed circles), have no corresponding image
points from the baseline image.
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contrast, the inverted change appears to be larger in size due to ver-
tical smearing between reflectors. The arrow in Figure 12b points to
a location where the inverted anomaly spreads beyond the boundary
of the actual anomaly but is well constrained by the reflector below.
The smearing occurs because the boundary of the true time-lapse
change, marked by the arrow in Figure 10b, is in the middle of the
layer. As we observed for the layered-model examples, velocity
changes within a single interval are vertically smeared throughout
the layer but bounded by the reflectors. With this limitation, IDWT
is again effective in recovering the local time-lapse velocity change.

DISCUSSION

From synthetic examples, we see that IDWT is able to robustly
recover time-lapse velocity changes, with acquisition limitations
such as narrow offsets and survey nonrepeatability. As with most
tomography methods, IDWT smears velocity changes along wave-
paths. However, the smearing effect is clearly bounded by reflectors
above and below the changes. This effect is important for leakage

monitoring when the ambiguity between the smearing and real leak-
age must be removed. Smaller differences between the boundary of
the changes and the reflector boundaries lead to more reliable es-
timates of velocity changes. Better estimates of the velocity changes
lead to more reliable interpretations of the changes.
In time-lapse inversions, we are interested in the relative changes

between the surveys at different times. However, the data residuals
due to the uncertainty in the baseline inversion are likely to contami-
nate the final result of time-lapse FWI. Tailored FWI schemes have
been developed to suppress these sources of noise (Denli and
Huang, 2009; Yang et al., 2011). In IDWT, errors in the baseline
model affect the baseline and monitor images. Because the monitor
images match the baseline ones, any perturbation in the velocity
model is caused by the kinematic difference between the monitor
and baseline data sets. Even with large baseline velocity errors,
IDWT recovers the correct magnitude and position of velocity
changes.
Another concern for time-lapse monitoring is the repeatability of

surveys. In practice, shot and receiver locations are not identical
between surveys, even for high-quality ocean bottom cables
(Beasley et al., 1997; Yang et al., 2013). In some cases, after the
initial large survey for exploration, specialized local surveys for

Figure 10. (a) The center part of the original Marmousi model is
used as the true baseline velocity model. The maximum source-
receiver offset is 2 km. Five shots (red stars) are used to generated
synthetic data. (b) True time-lapse velocity model with a negative
velocity change marked with a black dashed line. The black arrow
points to the area where the boundary of the changes is located in
the middle of the layer. We designed this half-layer velocity change
intentionally to show how IDWTwould smear the changes within a
layer.

Figure 11. (a) A smoothed version of the Marmousi model is used
as the baseline model for migration. (b) Migrated image for one shot
(red star). Areas pointed to by arrows are poorly imaged due to the
limited receiver aperture. Dashed lines mark the boundary of the
velocity changes. The interfaces above and below the anomaly
are well imaged.
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monitoring are more economical and efficient (Hatchell et al.,
2013). Deviations between survey geometries cause problems in
time-lapse FWI methods that require data subtractions (Watanabe
et al., 2005; Denli and Huang, 2009). In contrast, IDWT depends
only weakly on the survey geometry. With a good baseline model,
IDWT delivers accurate results, as long as the monitor survey
illuminates an area of interest that is also well imaged with the base-
line survey. When large errors (e.g., 800 m∕s) exist in the baseline
model, IDWT still produces reasonable results when differences in
survey geometries are considerable (e.g., 50 m).
From a computational point of view, IDWT requires two wave-

field extrapolations for each migration. With the same wave equa-
tion solver, it takes twice as much time as FWI for each iteration.
However, it is not necessary to simulate the full wavefield to form
the images. The image warping cost function is sensitive only to
misalignments, and it is robust to inaccuracy in simulated waveform
amplitudes. In contrast, traditional FWI needs accurate amplitudes
so that differences between waveforms are reliable. We could po-
tentially use a faster traveltime solver such as ray tracing to speed up
IDWT. Another possible concern is the memory requirement for
IDWT. Whereas RTM or FWI needs to store two wavefields for
calculating the gradient, IDWT needs to store four wavefields,
which could be too demanding in a 3D application. Symes
(2007) presents an optimal check-pointing method that trades float-

ing point operations for most of the storage in general adjoint com-
putations. Although the memory requirement is still going to be
twice that of FWI, it should be manageable in practice.
Although the time per iteration is twice that of FWI, IDWT ap-

pears to converge more quickly. Therefore, when using IDWT be-
fore FWI to resolve velocity anomalies with high resolution, the
actual computation of IDWT does not dominate the cost of the over-
all process. As in the first synthetic example in this study, IDWT
takes only 50% of the total CPU runtime of the process. When large
velocity changes exist, the cycle-skipping effect makes the regular
FWI cost function insensitive to velocity updates. IDWT using im-
age warping helps to find a good starting model with correct large-
scale kinematics for FWI. For initial velocity model building, ideas
similar to image warping can be implemented in the data domain to
avoid cycle skipping. However, with reflection geometries, FWI
fails to invert for volumetric changes in velocity and the result tends
to be like that of a least-squares migration. Ma and Hale (2013)
successfully overcome this problem. However, to extend their
method to time-lapse applications requires further study.
Beyond the theory and numerical studies presented here, we have

applied IDWT to field data sets (time-lapse walkaway vertical seis-
mic profiles) that were collected from a CO2 sequestration testing
site and successfully recovered P-wave velocity changes that cannot
be resolved by FWI (Yang et al., 2014). With very limited survey
apertures and the presence of strong noise in real data, stacking im-
ages of neighboring shots would increase the signal-to-noise ratio
and mitigate imaging artifacts without losing much angle informa-
tion if the source distribution is dense. Studies with more field data
sets of different acquisition conditions and different time-lapse
mechanisms (e.g., water flood, gas leakage) are planned for the near
future.

CONCLUSION

We have proposed a time-lapse wavefield tomography method in
the image domain for reflection data. The warping between baseline
and monitor images is used as a cost function that is sensitive to
smooth velocity perturbations and robust to cycle-skipping errors.
The method is accurate and wave-equation based, and it requires no
linearization or assumptions about the smoothness of the model. It
is computationally efficient with fast convergence, and it does not
require the computation of angle gathers. Even with limited acquis-
itions, such as narrow offsets and small numbers of sources, and for
complex subsurface structures, IDWT delivers reliable time-lapse
inversion results. It is also robust with respect to baseline velocity
errors and survey geometry discrepancies between surveys. With
IDWT, kinematic effects are distinguished from other time-lapse
effects, thereby providing a good foundation for subsequent analy-
sis of amplitudes and reservoir characterization.
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Figure 12. (a) The true time-lapse velocity changes. The anomaly is
smooth at its boundary (dashed lines). (b) The inverted time-lapse
changes using IDWTwith five shots. The black arrow points to the
area where the inverted velocity changes diffuse across the boun-
dary of the true changes (dashed lines) and are smeared toward and
bounded by the lower interface of this layer.
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APPENDIX A

ADJOINT METHOD FOR IDWT

Here, we present the mathematical derivation of the adjoint wave-
fields and the gradient for IDWT using the associate Lagrangian in
the time domain. Following the approach of Plessix (2006), the
steps of the derivation are: for model parameter m and cost function
JðmÞ:
1) list all the state equations Fi ¼ 0

2) build the augmented functional L by associating the indepen-
dent adjoint state variables λi with the state equations Fi

3) define the adjoint-state equations by ∂L
∂λi

¼ 0

4) compute the gradient by ∂L
∂m ¼ ∂J

∂m.

To make the process less complicated, we derive everything
based on a single shot in a 2D space. A more general derivation
can be easily achieved by summing over all the shots. The extension
to 3D is straightforward by applying an integral over y. The least-
squares functional is

JðmÞ ¼ 1

2

Z
x

Z
z
jwðx; zÞj2dxdz; (A-1)

where wðx; zÞ is the warping function that minimizes

Dðwðx; zÞÞ ¼ 1

2

Z
x

Z
z
jI1ðx; zÞ − I0ðx; zþ wðx; zÞÞj2dxdz;

(A-2)

where I0ðx; zÞ is the baseline image that stays invariant throughout
the process and I1ðx; zÞ is the monitor image based on the slowness
model m. The first derivative of the function with respect to wðx; zÞ
should be close to zero at the minimum point:

∂D
∂w

ðx; zÞ ¼ ðI1ðx; zÞ

− I0ðx; zþ wðx; zÞÞÞ ∂I0ðx; zþ wðx; zÞÞ
∂z

≈ 0:

(A-3)

The value of I1ðx; zÞ is obtained from the imaging condition:

I1ðx; zÞ ¼
ZT

0

usðx; z; tÞurðx; z; T − tÞdt: (A-4)

The source wavefield us is obtained by solving the following wave
equations:

8><
>:

m ∂2usðtÞ
∂t2 − ΔusðtÞ ¼ fs

usðx; z; 0Þ ¼ 0
∂usðx;z;0Þ

∂t ¼ 0

: (A-5)

The receiver wavefield ur is obtained by solving the following
equations:

8><
>:

m ∂2urðtÞ
∂t2 − ΔurðtÞ ¼ dðT − tÞ

urðx; z; 0Þ ¼ 0
∂urðx;z;0Þ

∂t ¼ 0

: (A-6)

For simplicity, the spatial boundary conditions are left unspecified
because any condition that guarantees a unique solution is accept-
able. In our numerical examples, we use absorbing boundary con-
ditions.
Using the Lagrangian formulation, we associate the adjoint states

~μ0s , ~μ1s , ~μ0r , and ~μ1r with the initial conditions in equations A-5 and A-
6, respectively. Adjoint states ~λs and ~λr are associated with the wave
equations in equations A-5 and A-6. Adjoint states ~ϕI and ~ϕw are
associated with equations A-4 and A-3. With the operations above,
the augmented functional is defined by

Lð ~ϕI; ~ϕw; ~λs; ~λr; ~μ0s ; ~μ1s ; ~μ0r ; ~μ1r ; ~us; ~ur; ~I1; ~w;mÞ

¼
Z
x

Z
z

1

2
j ~wðx;zÞj2dxdz

−
ZT

0

�
~λs;m

∂2 ~usðtÞ
∂t2

−Δ ~usðtÞ−fs

�
x;z
dt

−h ~μ0s ; ~usð0Þix;z−
�
~μ1s ;

∂ ~usð0Þ
∂t

�
x;z

−
ZT

0

�
~λr;m

∂2 ~urðtÞ
∂t2

−Δ ~urðtÞ−dðT− tÞ
�

x;z
dt

−h ~μ0r ; ~urð0Þix;z−
�
~μ1r ;

∂ ~urð0Þ
∂t

�
x;z

−
�
~ϕI; ~I1ðx;zÞ−

ZT

0

usðx;z;tÞurðx;z;T− tÞdt
�

x;z

−
�
~ϕw;−ð~I1ðx;zÞ− ~I0ðx;zþ ~wðx;zÞÞ∂

~I0ðx;zþ ~wðx;zÞÞ
∂z

�
x;z
.

(A-7)

with h~λs; ~usix;z ¼ ∫ x∫ z
~λsðx; zÞ ~usðx; zÞdxdz being the real scalar

product in space. By two integrations over t by parts, we switch
the second-order time derivative operator from ~us to ~λs:

ZT

0

�
~λs; m

∂2 ~usðtÞ
∂t2

�
x;z
dt ¼

ZT

0

�
m
∂2 ~λsðtÞ
∂t2

; ~us

�
x;z
dt

þ
�
~λsðTÞ; m

∂ ~usðTÞ
∂t

�
x;z

−
�
~λsð0Þ; m

∂ ~usð0Þ
∂t

�
x;z

−
�
m
∂~λsðTÞ
∂t

; ~usðTÞ
�

x;z
þ
�
m
∂~λsð0Þ
∂t

; ~usð0Þ
�

x;z

: (A-8)

The same operation is applied to similar terms: ∫ T
0 h~λr; m ∂2 ~urðtÞ

∂t2 i
x;z
dt,

∫ T
0 h~λs;Δ ~usðtÞix;zdt, and ∫ T

0 h~λr;Δ ~urðtÞix;zdt.
With equations A-7 and A-8, we can compute the derivatives

with respect to the adjoint states and evaluate them at
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ðλs; λr; us; ur;ϕI ; I1;ϕw; wÞ to obtain the adjoint-state equations.
With respect to ~us, we have equations

8><
>:

m ∂2λsðtÞ
∂t2 − ΔλsðtÞ ¼ ϕIð−urðT − tÞÞ

λsðTÞ ¼ 0
∂λsðTÞ
∂t ¼ 0

: (A-9)

With respect to ~ur, we have equations

8><
>:

m ∂2λrðtÞ
∂t2 − ΔλrðtÞ ¼ ϕIð−usðT − tÞÞ

λrðTÞ ¼ 0
∂λrðTÞ
∂t ¼ 0

: (A-10)

With respect to ~I1 and ~w we have equations

8>>><
>>>:

−ϕI−ϕw

�
−∂I0ðx;zþwðx;zÞÞ

∂z

�
¼0

w−ϕwð−ΠÞ¼0

Π¼
�

∂I0ðzþwðx;zÞÞ
∂z

�
2

−∂2I0ðzþwðx;zÞÞ
∂z2 ðI1ðx;zÞ− I0ðx;zþwðx;zÞÞÞ

:

(A-11)

By taking the derivative of L with respect to the model parameter
m, we have the gradient of the cost function:

∂L
∂m

¼ ∂JðmÞ
∂m

¼ −
ZT

0

∂2λsðx; z; tÞ
∂t2

usðx; z; tÞ þ
∂2λrðx; z; tÞ

∂t2
urðx; z; tÞdt:

(A-12)
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