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SUMMARY

Multi-component elastic seismic data collected at large offsets
have the potential to be used in seismic imaging and velocity
analysis. In this study, we present an approach for converted-
phase elastic-transmission migration velocity analysis with an
application for VSP and micro-seismic studies. Our approach
is based on the cross-correlation between converted-phase P-
and S-waves propagated backward in time, and is formulated
as an inverse problem with a differential semblance criterium
objective function for the simultaneous update of both P- and
S-wave velocity models. The merit of this approach is that
it is fully data-driven and requires only one elastic backward
propagation to form an image rather than the two (one forward
and one backward) acoustic propagations needed for standard
RTM. Moreover, as the method does not require forward prop-
agation, it does not suffer from migration operator source alias-
ing when a small number of shots are used. We present a
derivation of the method and test it with the synthetic Mar-
mousi model. We also show the differences between the stan-
dard reflection offset domain common image gathers and the
converted-phase image gathers that we use for model updates.

INTRODUCTION

Wave equation migration velocity analysis (WEMVA) for re-
flection data has been presented and discussed in many stud-
ies, e.g., Biondi and Sava (1999); Albertin et al. (2006); Shen
(2004, 2012). It has been recognized that although WEMVA
has lower resolution than full waveform inversion, it typically
does not suffer from the cycle skipping that is inherent to full
waveform inversion. On the other hand, converted-phase trans-
mission elastic imaging, formulated as a zero lag cross corre-
lation between P- and S-waves (both back propagated in time),
has been shown to have higher resolution (Xiao and Leaney,
2010) and fewer artifacts than reflection type imaging (Sha-
belansky et al., 2012). The accuracy and stability of the trans-
mission imaging methodology as well as other depth imaging
methods, depend strongly on the accuracy of the velocity mod-
els (i.e. P- and S-wave speeds). Yan (2010) analyzed the be-
havior of the objective function for converted P to S phases for
reflection-type WEMVA and showed that it appears to be con-
vex. Because of this, we expect transmission WEMVA to also
exhibit favorable properties for estimating large-scale velocity
models. In addition, converted-phase imaging depends only
on the back-propagated waves, and does not require forward
propagation of the point source. This eliminates the need for
a priori knowledge of the time excitation function and source
location.

In this paper, we outline the converted phase transmission WEMVA.
Our derivation follows that in Shen (2012) for reflected acous-
tic waves, using a differential semblance criterium in the ex-

tended offset domain common image gather (ODCIG). Specif-
ically, we extend the derivation to elastic waves. We test the
method with the Marmousi synthetic model (Versteeg and Grau,
1991), and present results for the velocity update.

CONVERTED PHASE ELASTIC WEMVA

Our derivation of converted-phase migration velocity analysis
is based on one propagation of the elastic wavefield backward
in time. Unlike the conventional WEMVA that uses two wave
fields from two propagations (i.e., forward and backward) for
cross-correlation, we obtain the two wavefields from one prop-
agation during which we separate the P- and S-waves at each
time step. Using these two wavefields we construct extended
offset image gathers. Note that, although in this study we use
transmitted waves, reflected waves can be used similarly.

For the sake of simplicity, we write the extended imaging con-
dition in 2D for elastic waves as

I(x,h,z) =
∫ 0

T up(x−h,z, t) ·us(x+h,z, t)dt, (1)

where h is the horizontal local offset, and up and us are the P-
and S-wave displacement vector fields, respectively. The dot
product operates on the x and z vector components. Note that
with this imaging condition the image is formed only at non-
zero offsets, as at zero offset, the converted phase transmission
and reflection coefficients are zero. The separation of the P-
and S-waves can be performed in different ways, (e.g., Yan
(2010)). We use the Helmoholtz decomposition for the homo-
geneous and isotropic elastic wave equation (Aki and Richards
(2002), page 64):

ü =
1
ρ

(∇((λ +2µ)∇ ·u)−∇× (µ∇×u)), (2)

where u = up + us. Assuming that the density ρ is homo-
geneous, we define model parameters as squared velocities
α̂ = α2 = λ+2µ

ρ and β̂ = β 2 = µ
ρ ,with which the P- and S-

wavefield components become üp = ∇α̂∇ ·up and üs =−∇×
β̂∇×us.

Before further continuing the derivation, we discretize the hor-
izontal offset h and the spatial x and z domain and keep the
time t continuous. We also consider I in equation 1 as a vector
for any h, representing in 1D a 2D grid of x and z.

To maximize the energy around zero-offset, we use the differ-
ential semblance objective function J,

J =
1
2

∑

h

(hI)† (hI) , (3)

where the superscript † refers to the transpose of a vector.
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Converted-Phase Elastic WEMVA

We find the gradient of the objective function with respect to
the model parameter α̂ is

∇α̂ J = ∂J
∂ α̂ =

∑
h

( ∂ I
∂ α̂

)†
h2I =

∑
h

(∫ ∂ I
∂up

∂up
∂ α̂ dt

)†
r

=
∫ ( ∂up

∂ α̂

)†
(∑

h

(
∂ I

∂up

)†
r

)
dt

(4)
where r = h2I is the residual image gather. Note that when the
energy is focused around zero-offset, the residual gather will
be equal to zero. Note also that in the expression above we
assume that ∂us

∂ α̂ = 0.

The right hand side of equation 4 consists of two terms:

∑
h

(
∂ I

∂up

)†
r and

(
∂up
∂ α̂

)†
. To calculate the first term, we dif-

ferentiate equation 1 with respect to up and multiply by the
residual gather r to obtain
(∑

h

(
∂ I

∂up

)†
r

)
(x,z, t) =

∑
h

u†
s (x+2h,z, t)r(x+h,h,z)

= ξp(x,z, t),
(5)

where the shifts of 2h and h in us and r, respectively, are sug-
gested by Shen (2004, 2012); we find that they seem to keep
additional information that would be lost otherwise because
r(x,h = 0,z) = 0. Note also that ξp is the residual vector field
for P waves, meaning that if α is correct and all of the en-
ergy is focused around zero offset then ξp = 0. Note also that
the residual vector field ξ is constructed as a superposition:
ξ = ξp +ξs.

To find
(

∂up
∂ α̂

)†
in equation 4, we consider equation 2 with any

input source function f as a linear system given as

Lu = L(up +us) = f , (6)

where L is a wave propagation operator defined as

L = ∇(α̂∇·)−∇× (β̂∇×)−∂ 2
t . (7)

By taking the derivative of equation 6 with respect to α̂ we
obtain

∂L
∂ α̂

u+L
∂u
∂ α̂

= 0. (8)

Since we assume again that ∂us
∂ α̂ = 0 we obtain,

∂L
∂ α̂

u+L
∂up

∂ α̂
= 0 (9)

or
∂up

∂ α̂
=−L−1 ∂L

∂ α̂
u =−L−1∇(∇ ·u), (10)

where ∂L
∂ α̂ u is the adjoint source.

Therefore the integrand of the right-hand side of equation 4
becomes
(

∂up

∂ α̂

)†

ξp =−u†∇∇ · (L−1)†ξp =−u†∇∇ ·ηp, (11)

where ηp = (L−1)†ξp is the wavefield found from the forward
propagation of the data residuals from the image points of the
extended offset gather. Note that (∇)† = ∇· and (∇·)† = ∇
(e.g., Ben-Menahem (1981), page 954).

B
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Figure 1: Schematic illustration of the extended imaging con-
ditions for: (a) standard reflection between the forward (F) and
backward (B) propagating (acoustic) wavefields; the moveout
generated by the imaging condition on the left is shown for
zero offset in the ODCIG and for zero-offset between the sur-
face source and receiver. In the center, we show the zero-offset
ODCIG for non-zero surface source-receiver offset. On the
right, we show the non-zero offset ODCIG for non-zero sur-
face offset. (b) converted-phase transmission waves between
propagating P- and S-wavefields; the moveout shown on the
left is for zero-offset in the ODCIG, on the right, the move-
out is for non-zero offset in the ODCIG. (c) The summation
over different moveouts for standard reflection on the left, and
for converted-phase transmission on the right. The red color
indicates different amplitude polarity, which is corrected by
multiplying by -1 for negative offsets. The arrows on the plots
define the direction of propagation, and the red dots indicate
the point of interaction between different wavefields.

Thus, finally for ∇α̂ J we obtain,

∇α̂ J =
∫ (

∂up

∂ α̂

)†

ξpdt =−
∫ (

u†∇∇ ·ηp
)

dt. (12)

Note that up to the derivative operators u†∇∇ · ηp is a zero
lag in time cross-correlation between the back-propagated data
wavefield and the forward propagated residual wavefield. This
is quite similar to full waveform inversion (FWI). However, the
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Converted-Phase Elastic WEMVA

potential advantage of this approach for micro-seismicity is the
fact that we do not need to know the location and time excita-
tion function of the micro-seismic event. Moreover, although
this method has lower resolution than FWI, it does not suf-
fer from the cycle skipping problem, inherent in FWI (Zhang
et al., 2012).

Because the derivation of ∇β̂ J is similar to that for ∇α̂ J, we
omit the former derivation and simply give the final result:

∇β̂ J =
∫ (

∂us

∂ β̂

)†

ξsdt =
∫ (

u†∇×∇×ηs
)

dt. (13)

Algorithm
Each iteration of the proposed algorithm consists of the fol-
lowing steps:

• Propagate each elastic shot gather backward in time,
and store the displacement wave fields u, up and us.

• Construct extended images I for all shots using equa-
tion 1.

• Construct residual extended image gathers r.

• Construct ξp and ξs for each shot from the stored up,
us and from r.

• Calculate ηp and ηs for each shot by forward propaga-
tion.

• Construct ∇α̂ J and ∇β̂ J for each shot and sum them
together.

• Update model parameters α̂ and β̂ using the gradients
and approximated inverse Hessians, calculated by Lim-
ited Memory BFGS (Nocedal and Wright, 2000).

CONSTRUCTION OF EXTENDED IMAGES AND THE
MERIT OF CONVERTED PHASE WEMVA

Conceptually, converted-phase WEMVA is very similar to stan-
dard reflection WEMVA. However, there are inherent differ-
ences between the two approaches. First, the imaging con-
dition is based on converted phases and therefore amplitude
polarity plays an important role when we construct the ex-
tended offset gathers from different propagation angles. Sec-
ond, the physical construction of the extended local gathers are
very different: standard reflection gathers are formed from the
forward and backward propagated wavefields of the same P-
wave type, whereas the converted-phase gathers are obtained
from a single back-propagated elastic wavefield separated into
its P and S components. Note that although here we present
converted-phase WEMVA for transmitted waves, the deriva-
tion for reflection WEMVA with back-propagated converted-
phase waves is similar. Figure 1 illustrates the differences be-
tween the standard and transmission approaches. Note that by
shifting the wavefields, we obtain two-sided shift in offset, for
reflection (Figure 1a), while for the transmission case, the shift
is one-sided (i.e., the other side is zero - Figure 1b). This ex-
plains why when elastic waves propagate from different direc-
tions, they interfere with different sign. The summation over

different events, shown in Figure 1c, illustrates the distribution
of energy and its difference. For WEMVA we take the abso-
lute value, and therefore we expect that the change in polarity
should not affect the kinematic estimation.

PRACTICAL CONSIDERATIONS

There are many practical considerations that are unique to this
WEMVA and need to be addressed. First, as mentioned above,
the amplitude polarity change is generally one of the most
important issues with elastic imaging and velocity analysis.
Many studies address this issue and provide different solutions
either correcting it in angle domain common image gathers (Lu
et al., 2010) or with the help of the Poynting vector (Shang
et al., 2012). However, for our synthetic study, we simply cor-
rect the amplitudes in the image domain as well as in the ex-
tended local offset domain (i.e for negative offsets we multiply
the obtained image for each source by -1). The second con-
sideration is the surface waves contained in the data that could
contaminate the focusing of energy in the shallow part of the
extended offset gathers. We apply a Laplacian filter on the final
extended images before the residual images are constructed to
reduce the effects of the surface waves. The third considera-
tion is the fact that we need to work with vector fields. This
might be cumbersome and lead to errors and instabilities. Of
course, in 2D, we might work with the scalar P- and S wave-
fields in lieu of the vector field. However, care needs to be
taken when we inject residuals for the forward propagation.
The fourth consideration is the smoothing and regularization
of the gradients for α̂ and β̂ . In our study we regularize the
gradients in the so-called vertical time domain, e.g., Shabelan-
sky (2007), which stabilizes and speeds up the convergence.
The transformation for vertical time is given by

∇α̂ J(x,z)−→ ∇α̂ J(τx
α ,τz

α )
∇β̂ J(x,z)−→ ∇β̂ J(τx

β ,τz
β ), (14)

where vertical time τ is defined as τz
α = z

α , τx
α = x

α , τz
β = z

β ,
τx

β = x
β .

NUMERICAL TESTS

We test our algorithm with the Marmousi synthetic velocity
model (Versteeg and Grau, 1991). This model is not only a
complicated model for velocity analysis, but is also very het-
erogeneous, which generates many converted-phase waves that
are essential for our elastic wave imaging and WEMVA. In our
tests, we decompose the P-wave velocity model (Figure 2a)
into the shear modulus, µ , with constant density of 2000 kg/m3

and constant Lame parameter λ , of 4·109 Pa, and generate 22
isotropic sources equally distributed at 1200 m depth with hor-
izontal increment of 100 m. The data are recorded with two-
component receivers that are equally distributed on the surface
and span the computational grid at the surface. The number of
grid points in the model is Nz = 150 and Nx = 287, and the spa-
tial increments are ∆x = ∆z = 10 m. We use a Ricker wavelet
with a peak frequency of 25 Hz and ∆t of 0.001 s. All elas-
tic wave solutions, equation 2, are modeled with a 2D finite-
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Figure 2: P-wave velocity α used for inversion: (a) true model,
(b) initial model, (c) inverted model after 20 iterations, and (d)
inverted model after 40 iterations.

difference solver, using a second order in time staggered-grid
pseudo-spectral method with perfectly matched layer (PML)
absorbing boundary conditions (Kosloff et al., 1984; Carcione,
1999; Marcinkovich and Olsen, 2003).

(a) True
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Figure 3: Transmission converted-phase ODCIG of 22 mi-
grated shots with (a) correct velocity, (b) initial velocity and
(c) inverted velocity (after 40 iterations). The horizontal posi-
tion of the image gather is at 1.5 km. Note that the vertical red
dashed line is positioned at h = 0.

Having calculated the elastic seismic data, we test our inver-
sion with the smoothed Marmousi P-wave velocity model, shown
in Figure 2b, and update only the model parameter α̂ . Note
that by keeping a known and constant density and λ , we up-
date the shear modulus µ for wave propagation. For the sake
of stabilization of the inversion process, we start with dh of
order of three P-wave wavelengths and then after 10 iterations
reduce dh to one wavelength. In Figure 2c and d, we show the
results of the inversion after 20 and 40 iterations, respectively.
Figure 3 shows the true, initial and inverted ODCIGs at hori-
zontal position of 1.5 km. Note that the energy for the inverted
result is focused around zero-offset.

Figure 4a shows the true reflectivity of the Marmousi model,
calculated by applying a Laplacian filter to Figure 2a. Fig-
ure 4b shows the migration result using the converted-phase
transmission imaging method (equation 1 with h = 0). This
result is obtained with the correct velocity model (Figure 4a)
using 22 shots. In Figure 4c, we show an equivalent migration
result obtained with the initial smooth velocity model (Fig-
ure 2b), and in Figure 4d with the inverted model (Figure 2d).
We observe that although the inverted result is improved, it is
of a lower frequency than the image with the correct model.
This effect is a subject of future investigation.
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Figure 4: (a) Reflectivity model of Marmousi. Transmission
converted-phase image made with 22 shots with (b) correct
velocity, (c) initial velocity and (d) inverted velocity (after 40
iterations).

CONCLUSIONS

In this study we presented a data-driven method for converted
phase transmission elastic migration velocity analysis. The
method is formulated as an inverse problem and was tested
with the Marmousi model. We were able to obtain an accu-
rate, though low resolution, image of Marmousi from a rela-
tively simple starting model. The results show promise for ap-
plication to field data, in particular for VSP and micro-seismic
applications, with a particular advantage being that it does not
require forward propagation and can be applied automatically.
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