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» Why we image the Earth
» How data are collected
» Imaging vs inversion
» Underlying physical model

« Data Model
« Imaging methods
» Kirchhoff
» One-way methods
» Reverse-time migration
» Full-waveform inversion

« Comparison of Methods



Approximate Techniques

o Kirchhoff

» Integral technique
» Related to X-ray CT imaging
» Generalized Radon Transform
» Conventionally uses ray theory
« One-way
~ Based on a paraxial approximation
> Usually computed with finite
differences



One-Way Methods

Physical Motivation

e downward continuation
e imaging condition
Claerbout 71, 85
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A Data Model

(5G(S, r, t) =/ /G()(I’, t—to, X)V(X)atzGo(X, to, S)dtho
XJT

0G(s,r,w) = —/szo(r,w,x)V(x)Go(x,w,s)dx
X

L

Go(x, t, 5)% fGo(r, t,x)

V(x)




A Data Model

5G(S, r, t) =/ /Go(l’, t—to, X)V(X)BtzGo(X, to, S)dxdto
xJT
0G(s,r,w) = — / w?Go(r, w, x)V(x)Go(x, w, s)dx
X

J
/ w?G_(r,w, x)G_(s, w, x)V(x)dx
X



One-Way Methods

Approximating the Wave Equation

Idea (1D, c constant):
(82 — B2)u = (Bx — 8)(Dx + Du)u
c not constant:

(c(x)02 — B2)u = (c(x)8x — D) (c(x)3 + B )u
— c(x)(0xc(x))Ou

c(x) smooth =- better approximation



One-Way Methods

Approximating the Wave Equation
Taylor (81), Stolk & de Hoop (05)

Multi-dimensional:
Lu=f

o (50) = (% Do)+ (%)

A(z,x, O, &) = 92 — c(z,x)20?



One-Way Methods

Approximating the Wave Equation
Taylor (81), Stolk & de Hoop (05)

Diagonalize in smooth background

u iB 0 u f
9; (.:) = ( 0 iB_)<uJ_r) + <fJ_r)
b (€, %, w) = /€2 — co(x) ~2w?
B. FIOs




One-Way Methods

Approximating the Wave Equation
Taylor (81), Stolk & de Hoop (05)

Diagonalize in smooth background

u, _ iB+ 0 u, f+
() = (% 2 () + (1)
Solution: c. 0
— +
@=(%d)

Gp propagator in cg



One-Way Methods

Approximating the Wave Equation
Taylor (81), Stolk & de Hoop (05)

Relate ut to u and 9O,u

(5) =387 e (o)

[(c(:x))2 - ||s||2] -

Q- differ in sub-principal parts
Qi ’l,bDOS

q+



One-Way Methods

Modeling Data Stolk & de Hoop (05)

0G(s,r,w) =
/x w?Q* (r)G_(r, w, x)V(x)G(x, w, s)Q, (s)dxdz

V(x) = %Q—(Za x)dc(z, x)co(z, x)_3Qi(z, x)



One-Way Methods

Modeling Data Stolk & de Hoop (05)

0G(s,r,w) =
/X W2Q* (1NG_(r, w, )V(x)Go (%, @, $)Q, () dxdz

V(x) = %Q—(Zv x)dc(z, x)co(z, X)_3Q*+(Z, x)

Reciprocity:
s rr s

NN,



One-Way Methods
Modeling Data Stolk & de Hoop (05)

0G(s,r,w) =
/ w?Q* (r)G_(r, w, x)V(x)G4(x, w, s)Q, (s)dxdz
X
V(x) = %Q—(za x)dc(z, x)co(z, x)_3Qj.(Zv x)
Drop Qs
//sz_(O,r,w,z,x)G_(O,s,w,z,x)
X Jz

(E2E1a)(z, x)dzdx

E; : b(z,r,s) — (t)b(z,r,s)

Ei:a(z,x) — &(r —s)a(z, 3*



One-Way Methods

Imaging Claerbout (78) Stolk & de Hoop (06)

e downward continuation
e imaging condition
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One-Way Methods

Imaging Claerbout (78) Stolk & de Hoop (06)

e downward continuation
d(z,s,r,t) = H(z,0)*Q 1*d(s, r, t)

(H(z,20)) (s, r, t, 50, 10) =
(G—(2,20))(r, t,10) * (G_(2,20)) (s t, S0)

His an FIO Hx H is WDO
e imaging condition



One-Way Methods

Imaging Claerbout (78) Stolk & de Hoop (06)

e downward continuation
e imaging condition

V(z,x) = a(z,x, x, 0)
V(x) = 1Q_(2)6c(z: x)co(z, %) Q% (2)

Recall Q are WDOs & H*H is vDO

We have again located the singularities



One-Way Methods

Example

lateral position (km)
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Approximate Techniques

o Kirchhoff

» Integral technique
» Related to X-ray CT imaging
» Generalized Radon Transform
» Conventionally uses ray theory
« One-way
~ Based on a paraxial approximation
> Usually computed with finite
differences



‘Exact’ Techniques

« Reverse-time migration (RTM)
> Run wave-equation backward
> Usually computed with finite
differences
» “No” approximations (to the acoustic,
isotropic, linearized wave-equation, for
smooth media assuming single scattering)

o Full-waveform inversion (FWI)
» Iterative method to match the entire

waveform
» Gives smooth part of velocity model



Reverse-Time Migration

Modeling Data

5G(S, r, t) =/ /G()(I’, t—to, X)V(X)atzGo(X, to, S)dtho
XJT

0G(s,r,w) = —/szo(r,w,x)V(x)Go(x,w,s)dx
X
» r

GO(X7 t, S)

GO(ra t, X)

V(x)



Reverse-Time Migration

Modeling Data

0G(s,r, t) =/ /Gg(r, t—to, x)V(x)Btng(x, to, s)dxdty
XJT

0G(s,r,w) = — / w?Go(r, w, x)V(x)Go(x, w, s)dx
X

F : c — &G is again an FIO



Reverse-Time Migration

Forming an image

0G(s,r,w) = —/szo(r,w,x)V(x)Gg(x,w,s)dx
X

F:dc— 0G is again an FIO
F*: G — d6c is again an FIO

F*F is WDO for complete coverage
Stolk et al. (09)
e no direct rays (transversal intersection)
e no source-side caustics
e cg € C™



Reverse-Time Migration

Forming an Image

Procedure:
Whitmore (83), Loewenthal & Mufti (83), Baysal et al (83)

e back propagate in time
e imaging condition

2 ¢

GO(X7 t, S)

Go(l‘, t, X)

V(x)



Reverse-Time Migration

an Adjoint State Method

Lailly (83,84), Tarantola (84,86,87) Symes (09)
For a fixed source, s,

(202 — V2)q(x, t;s) = / 5G(r, t; s)3(x — r)dr
R
q(-,t,c) = Ofort>T
receivers act as sources, reversed in time

2
c?(x)

Im(x) =

//q(x,t; s)82Go(x, t, s)dtds



Reverse-Time Migration
Example Liu et al (07)
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‘Exact’ Techniques

« Reverse-time migration (RTM)
> Run wave-equation backward
> Usually computed with finite
differences
» “No” approximations (to the acoustic,
isotropic, linearized wave-equation, for
smooth media assuming single scattering)

o Full-waveform inversion (FWI)
» Iterative method to match the entire

waveform
» Gives smooth part of velocity model



Full-waveform Inversion

Problem Setup Tarantola (87), Virieux & Operto (09)

Recall our initial formulation:

1
Lu:= (V?— S8 u=f
Cc

u=20 t<o0
82u|z=0 =0
FWI attempts to solve for c directly given u,f

no splitting of c
but band limited data = smooth solution



Full-waveform Inversion

Problem Setup Tarantola (87), Virieux & Operto (09)

Recall our initial formulation:

1
Lu:= (V2 — —283)11 = f
C

Compute:

min. || Lu — d|[12(s,Rr)x[0,T])



Full-waveform Inversion
Some Issues Symes (09)

Compute:
minc||Lu — d||rz(s,r)x[0,T])

e Objective function appears non-convex
Can we restrict the domain of models so
that it is? e.g. cpin < € < Chax

e What space must c be in for objective
function to be differentiable?

e Data are finite bandwidth — we cannot
resolve structures on all scales



Full-waveform Inversion

Work-around 1: Partial Linearization Symes (09)

Idea: Extend dc(x) from X to X
Example: dc(x) — d€(x, h) = §(h)dc(x)

s r
form extended
x —h/2 image here
X+ h/2

form image here

Claerbout (85) suggested this extension



Full-waveform Inversion

Work-around 1: Partial Linearization Symes (09)

Idea: Extend dc(x) from X to X
Example: dc(x) — d¢(x,h) = §(h)dc(x)

Now extend
F[oc] — 0G

to R
E[62(x, h)] — &G

s.t. F is ‘invertible’ (I — F'F is smoothing)
Find cg s.t. supp (d¢(x,h)) C {(x,h)|h = 0}

Stolk & de Hoop (2001), Stolk et al (2005) show invertibility



Full-waveform Inversion

Work-around 2: Separation of Scales
Pratt (99), Virieux (09)

ming||Lu — d||rz((s,r)x[0,T]) NOt convex
= ||Cinitial — Ctrue|| Must be small

Solve for G(w) from wy,in tO Wiax

No proof optimization converges



Full-waveform Inversion

Work-around 2: Separation of Scales, example
Virieux (09)

16 20 24 28 3.2



e Introduction
» Why we image the Earth
» How data are collected
» lmaging vs inversion
» Underlying physical model
o Data Model
e Imaging methods
» Kirchhoff
> One-way methods
» Reverse-time migration
» Full-waveform inversion

e Comparison of Methods



Comparison of Methods

Kirchhoff vs One-way Fehler & Huang (02)

Horizontal Distance (km)
4 5 6 7 8 9 10 11 12 13

Depth (km)

Figure 5 Kirchhoff migration image obtained by migrating all common-shot gathers for
the model in Figure 1. Solid line shows boundary of salt body in Figure 1.

Kirchhoff



Comparison of Methods

Kirchhoff vs One-way Fehler & Huang (02)

Horizontal Distance (km)
4 5 6 7 8 9 10 11 12 13

Figure 6 Phase-shift migration image obtained by migrating all common-shot gathers
for the model in Figure 1. Solid line shows boundary of salt body in Figure 1.

Phase-shift



Comparison of Methods

Kirchhoff vs One-way Fehler & Huang (02)

Horizontal Distance (km)

Depth (km)

Figure 7 Split-step Fourier migration image obtained by migrating all common-shot
gathers for the model in Figure 1. Solid line shows boundary of salt body in Figure 1.

Split-step



Comparison of Methods

Kirchhoff vs RTM zhu & Lines (98)

Distance (km)
3

Depth (km)

FiG. 1. Kirchhoff migration impulses. The migration is based
on a blocked velocity model with a normal fault developed
throughout the depth range. The velocity in each block linearly
increases with depth.
Distance (km)
3

Depth (km)

FIG. 2. Reverse-time migration impulses. The migration is
based on the same input data and the same velocity model
as used in Figure 1.



Comparison of Methods

Kirchhoff vs RTM Zzhu & Lines (98)

Distance (km)
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FIG. 5. The final migration section of the Marmousi model data set produced by the Kirchhoff integral method.

Kirchhoff



Comparison of Methods

Kirchhoff vs RTM Zzhu & Lines (98)

Distance (km)

I
il

o

IS

Depth (km)

1
9

FIG. 6. The final migration section of the Marmousi model data set produced by the reverse-time migration.

Reverse-time



Comparison of Methods
One—Way vs RTM Farmer (06)
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Reverse-time



Comparison of Methods

One—Way vs RTM Farmer (06)




f Methods
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One—Way vs RTM Farmer (06)
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Comparison of Methods
Real Data Farmer 2006

sa00
00
Fal
o0
o200
s
w00
o0
To00
7200
790
72

Kirchhoff




Comparison of Methods
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Comparison of Methods
Real Data Farmer 2006
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Summary of Methods

e Kirchhoff requires a lot of rays
(or a simple model)

e One-way doesn’t handle turning waves

e RTM separation of up/down-going waves
is challenging

Co is key

e FWI optimization doesn’t convergence
from an arbitrary starting model

...and we never spoke about the source ...
...or multiple-scattering ...
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