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Abstract

There are many features in the Earth’s crust that involve a jump in physical property
across a sharp boundary, for example, an ore deposit in host rocks. Such well defined
boundaries are often of interest to geophysicists, however traditional minimum
structure inversion methods produce blurred images of the sub-surface. In this paper
we explore the application of a level set inversion method to recover a sharp boundary
between two slowness values, one characterizing an inclusion, e.g. an ore body, the
other characterizing a background, e.g. host rock, from first arrival travel time data.
The scenario considered is that of cross-borehole tomography in two dimensions.

Motivation

• Typical geophysical inversions discretize the Earth into many cells and seek smoothly varying
models by minimizing the L2 norm of the gradient.

• In contrast, geologists’ interpretations about the Earth typically involve contacts between distinct rock
units. There are benefits to performing fundamentally different inversions that seek the interfaces
between proposed rock units.

• Possible application: more precise delineation of massive sulphides for resource estimation and
mine planning after the initial drilling and logging.

Level set method

• Originated as a method to track propagating fronts with curvature dependent propagation speed, in
such application as crystal growth and flame propagation (Osher & Sethian, 1988).

• Application to inverse problems was first proposed by Santosa (1996).
• Applications to many inverse problems have been developed in medical imaging, inverse scattering,

electromagnetics, image segmentation and geophysics. In many application the real innovation is in
determining how to evolve the level set function.

• Other methods to parametrize and recover interfaces include: interface preserving regularization
norms; explicit boundary parametrization, e.g. with B-splines and spherical harmonics; hybrid
methods, e.g. level sets of Hermite interpolants drawn through points on the boundary.

Level Set Parametrization

• An interface (a contact) Γ is parametrized as the 0-level set of a Lipschitz continuous function
• The model values on an

underlying mesh are
determined by the level set
function φ as follows:

φ > 0, in the inclusion
φ < 0, in the background
φ = 0, on the interface

Γ

Ωincl

s = sincl
φ ≥ 0

Ωbg, s = sbg, φ < 0

An illustration of the concept of the level set method:
the intersection of the 0-level (blue) with the level
set function (red) generates the lower dimensional
bodies (grey) (with permission of Oleg Alexandrov).

• The slowness model can be represented as

s(x) = sinclH(φ(x)) + sbg(1− H(φ(x))), H − 1-D Heaviside function

• The interface changes as the level set function evolves to minimize the objective function.
• The level set method naturally handles topology changes (merges, separations) without adding

algorithmic complexity.

Problem formulation

• Forward problem. Given piecewise constant slowness s(x) compute the first arrival travel times
from sources to receivers. Travel times are found by computing the viscosity solution of the eikonal
equation:

|∇τ (x)| = s(x), τ (xsource) = 0

• Inverse problem. Given observed first arrival times τobs from sources to receivers, and slowness
values sincl, sbg inside inclusion and background inferred from sonic logs, find a level set function φ(x)
that minimizes the objective function:

F [φ(x)] = M[φ(x)] + βR[φ(x)]

• M is square misfit

M[φ(x)] =
1
2

∑
data points

(
τ [φ(x)]− τobs

)2

• Regularization

R[φ(x)] = length of interface =

∫
Ω

δε(φ(x))|∇φ(x)|dx

• The inverse problem is solved by an optimization routine, e.g. steepest descent method:

φ(k) = φ(k−1) − α(k)∂F
∂φ

(
φ(k−1)

)

Derivatives calculation

• Iterative gradient type methods require the computation of the Frechet derivative of ∂F
∂φ at each

iteration. Assuming the Frechet derivative exists, it can be obtained by the chain rule:

∂F
∂φ

=
∂M
∂s

∂s
∂φ

+ β
∂R
∂φ

• The derivative ∂s
∂φ is computed from the level set parametrization

∂s
∂φ

(x) = (sincl − sbg)δε(φ(x)).

• The derivative ∂M
∂s can be efficiently computed for each source by the adjoint state method (Leung

and Qian, 2006). Assuming that the receivers are located on a part ∂Ω̃ of the domain boundary ∂Ω,
the adjoint problem for the linearized eikonal equation with respect to the L2 inner product is
formulated as follows: find λ(x) such that

∇ · (λ∇τ ) = 0 in Ω

n · (λ∇τ ) = −(τ − τobs) on ∂Ω̃

n · (λ∇τ ) = 0 on ∂Ω \ ∂Ω̃

• Once λ is found, ∂M
∂s is computed by

∂M
∂s

(x) =
∑

sources

λ(x)s(x).

• The partial derivative of ∂R
∂φ :

∂R
∂φ

(x) = −δε(φ)∇ · ∇φ|∇φ|

• δε(φ) is a smooth approximation to δ-function such that δε(φ) 6= 0 only when |φ| < ε.

Examples with synthetic data: fast inclusion

Fast inclusion: 6.3 km/s, slow background: 4.5 km/s

True model Data, 1% noise Solution from final model Difference
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Fast inclusion example: (a) true model; (b) synthetic data with added 1% Gaussian noise; (c) forward solution from the final model;
(d) difference between the noisy data and forward solution from the final model. In images (b)-(d) each pixel represents the travel
time between one source-receiver pair. The color scale represents travel times in sec.
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(a) Reconstruction of the 3 elongated fast inclusions with the level set inversion method. The true shapes of the inclusions are
outlined in a black line. The color scale represents the P-wave speeds in m/sec. (b) Total objective function F , data misfit M and
regularization βR during the inversion. (c) Model computed by a minimum structure inversion of the same data set.

Examples with synthetic data: slow inclusion

Slow inclusion: 4.5 km/s, fast background: 6.3 km/s

True model Data, 1% noise Solution from final model Difference
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Slow inclusion example: (a) true model; (b) synthetic data with added 1% Gaussian noise; (c) forward solution from the final model;
(d) difference between the noisy data and forward solution from the final model. In images (b)-(d) each pixel represents the travel
time between one source-receiver pair. The color scale represents travel times in sec.
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(a) Reconstruction of the 3 elongated slow inclusions with the level set inversion method. The color scale represents the P-wave
speeds in m/sec. (b) Total objective function F , data misfit M and regularization βR during the inversion. (c) Model computed by
a minimum structure inversion of the same data set.

Reconstruction from a real data set

(a) Reconstruction by minimum structure inversion using ”smart arrivals”(courtesy of Brandon Reid) (b) Reconstruction by the
level set method. Background and inclusion velocities are 5.7 and 4.5 km/s, corresponding to slowness 0.1754 and 0.2222 s/km,
chosen based on the sonic log data. Number of data points: 16243, number of model points: 32076 in level set inversion, 10369
in minimum structure inversion.

Conclusions

• In this poster we considered an application of the level set method to the inversion of first arrival
travel time data for a slowness model consisting of two phases, where the slowness values are
assumed known.

• We tested our method on a synthetic example with the true medium consisting of three elongated
fast and slow inclusions where the contrast between the slowness values is high. We obtained good
reconstructions of the inclusions.

• Inversion of the real data set yields a tomogram that agrees well with the minimum structure
inversion result and sonic log data.

• The method is rather insensitive with respect to the starting inclusion shape.
• Sensitivity studies with respect to the errors in the slowness values, and uncertainty analysis of the

recovered inclusion shapes are necessary to determine our confidence in the performance of the
level set method.
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