Finite-volume modelling of geophysical electromagnetic data using potentials on unstructured staggered grids

Hormoz Jahandari and Colin G. Farquharson

SEG 85th Annual Meeting, New Orleans
October 20, 2015

Contents

(1) Unstructured grids
(2) Finite-volume discretization of Maxwell's equations (direct EM-field and potential formulation)
(3) Example for a grounded wire source
(9) Example for a helicopter EM survey
(6) Conclusions

Unstructured grids

- Model irregular structures

Hormoz Jahandari and Colin G. Farquharson

Unstructured grids

- Topographical features
- Geological interfaces
- Local refinement (at observation points, sources, interfaces)

Dual tetrahedral-Voronoï grids

- Grid generator: TetGen (Si, 2004)

tetrahedral grid

500,500,-500(m)
Voronoï grid

Staggered finite-volume schemes

- Magnetic field divergence free
- Easy for implementing boundary conditions
- Satisfies the continuity of tangential E
- Physically meaningful

Rectilinear dual grid

Rectilinear dual contours

Staggered finite-volume schemes

Delaunay-Voronoï contours

Dual tetrahedral-Voronoï grid

Staggered finite-volume schemes

Direct EM-field method

- Unknowns are E and/or H
- Simpler
- Smaller system of equations
- III-conditioned

EM Potential $(A-\phi)$ method

- Unknowns are A and ϕ
- Larger system of equations
- Well-conditioned
- Allows studying the galvanic and inductive parts

Direct EM-field formulation of Maxwell's equations

- Maxwell's equations:

$$
\begin{aligned}
\nabla \times \mathbf{E} & =-i \omega \mu_{0} \mathbf{H}-i \omega \mu_{0} \mathbf{M}_{p} \\
\nabla \times \mathbf{H} & =\sigma \mathbf{E}+\mathbf{J}_{p}
\end{aligned}
$$

Helmholtz equation for electric field

$$
\nabla \times \nabla \times \mathbf{E}+i \omega \mu_{0} \sigma \mathbf{E}=-i \omega \mu_{0} \mathbf{J}_{p}-i \omega \mu_{0}\left(\nabla \times \mathbf{M}_{p}\right)
$$

- Homogeneous Dirichlet boundary condition:

$$
\mathbf{E}=0 \quad \text { at } \infty
$$

or

$$
\mathbf{E} \cdot \tau=0 \quad \text { on } \Gamma
$$

EM-field formulation: Discretization

- Integral form of Maxwell's equations:

$$
\begin{aligned}
& \oint_{\partial S^{D}} \mathbf{E} \cdot d \mathbf{I}^{D}=-i \mu_{0} \omega \iint_{S^{D}} \mathbf{H} \cdot d \mathbf{S}^{D}-i \mu_{0} \omega \iint_{S^{D}} \mathbf{M}_{p} \cdot d \mathbf{S}^{D} \\
& \oint_{\partial S^{V}} \mathbf{H} \cdot d \mathbf{I}^{V}=\sigma \iint_{S^{V}} \mathbf{E} \cdot d \mathbf{S}^{V}+\iint_{S^{V}} \mathbf{J}_{p} \cdot d \mathbf{S}^{V} \\
& \xrightarrow[\mathrm{E}]{\text { E }} \text { + }
\end{aligned}
$$

EM-field formulation: Discretization

- Discretized form of Maxwell's equations:

$$
\begin{aligned}
& \sum_{q=1}^{w_{j}^{D}} E_{i(j, q)} l_{i(j, q)}^{D}=-i \mu_{0} \omega H_{j} S_{j}^{D}-i \mu_{0} \omega M_{p_{j}} S_{j}^{D} \\
& \sum_{k=1}^{w_{i}^{V}} H_{j(i, k)} l_{j(i, k)}^{V}=\sigma E_{i} S_{i}^{V}+J_{p_{i}} S_{i}^{V}
\end{aligned}
$$

EM-field formulation: Discretization

- Discretized form of Helmholtz equation:

$$
\begin{aligned}
& \sum_{k=1}^{W_{i}^{V}}\left(\left(\sum_{q=1}^{W_{j}^{D}} E_{i(j, q)} I_{i(j, q)}^{D}\right) \frac{l_{j(i, k)}^{V}}{S_{j(i, k)}^{D}}\right)+i \omega \mu_{0} \sigma E_{i} S_{i}^{V} \\
& =-i \omega \mu_{0} \sum_{k=1}^{W_{i}^{V}} M_{p_{j(i, k)}} \frac{l_{j(i, k)}^{V}}{S_{j(i, k)}^{D}}-i \omega \mu_{0} J_{p_{i}}
\end{aligned}
$$

EM potential (A- ϕ) formulation of Maxwell's equations

- Magnetic vector and electric scalar potentials:

$$
\begin{aligned}
\mathbf{E} & =-i \omega \mathbf{A}-\nabla \phi \\
\mu_{0} \mathbf{H} & =\nabla \times \mathbf{A}
\end{aligned}
$$

Helmholtz equation in terms of potentials

$$
\nabla \times \nabla \times \mathbf{A}-\nabla(\nabla \cdot \mathbf{A})+i \omega \mu_{0} \sigma \mathbf{A}+\sigma \mu_{0} \nabla \phi=\mu_{0} \mathbf{J}_{p}+\mu_{0} \nabla \times \mathbf{M}_{p}
$$

Conservation of charge

$$
\begin{gathered}
-\nabla \cdot \mathbf{J}=\nabla \cdot \mathbf{J}_{p} \\
i \omega \nabla \cdot \sigma \mathbf{A}+\nabla \cdot \sigma \nabla \phi=\nabla \cdot \mathbf{J}_{p}
\end{gathered}
$$

- Homogeneous Dirichlet boundary condition:

$$
(\mathbf{A}, \phi)=0 \quad \text { at } \infty
$$

or

$$
(\mathbf{A} \cdot \tau, \phi)=0 \quad \text { on } \Gamma
$$

EM potential (A- ϕ) formulation of Maxwell's equations

Relations used for the finite-volume discretization

$$
\begin{align*}
\nabla \times \mathbf{H}-\mu_{0}^{-1} \nabla \psi+i \omega \sigma \mathbf{A}+\sigma \nabla \phi & =\mathbf{J}_{p}+\nabla \times \mathbf{M}_{p} \tag{1}\\
\mu_{0} \mathbf{H} & =\nabla \times \mathbf{A} \tag{2}\\
\psi & =\nabla \cdot \mathbf{A} \tag{3}\\
i \omega \nabla \cdot \sigma \mathbf{A}+\nabla \cdot \sigma \nabla \phi & =\nabla \cdot \mathbf{J}_{p} \tag{4}
\end{align*}
$$

The system of equations for the $\mathrm{A}-\phi$ method

- Decompose A and ϕ into real and imaginary parts:

$$
A=A_{r e}+i A_{i m} ; \quad \phi=\phi_{r e}+i \phi_{i m}
$$

- Resulting block matrix equation:

$$
\left(\begin{array}{cccc}
\mathbf{A} & -\omega \mathbf{B} & \mathbf{C} & 0 \\
\omega \mathbf{B} & \mathbf{A} & 0 & -\mathbf{C} \\
0 & -\omega \mathbf{D} & \mathbf{E} & 0 \\
\omega \mathbf{D} & 0 & 0 & \mathbf{E}
\end{array}\right)\left(\begin{array}{c}
\mathbf{A}_{r e} \\
\mathbf{A}_{i m} \\
\Phi_{r e} \\
\Phi_{i m}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{S}_{1} \\
0 \\
\mathbf{S}_{2} \\
0
\end{array}\right)
$$

Solution of the finite-volume schemes

- Direct solution: MUMPS sparse direct solver (Amestoy et. al, 2006)
- Iterative solution: BiCGSTAB and GMRES solvers from SPARSKIT (Saad, 1990)

Example 1: grounded wire

- 100 m wire along the x axis operating at 3 Hz
- Dimensions of the prism: $120 \times 200 \times 400 \mathrm{~m}$
- $\sigma_{\text {ground }}=0.02 \mathrm{~S} / \mathrm{m} ; \sigma_{\text {prism }}=0.2 \mathrm{~S} / \mathrm{m}$
- Observation points along the x axis

Example 1: grounded wire

- Dimensions of the domain: $40 \times 40 \times 40 \mathrm{~km}$
- Number of tetrahedra: 162,689

Example 1: grounded wire

- (on Apple Mac Pro; 2.26 GHz Quad-Core Intel Xeon processor)

Example 1: grounded wire

- Scattered electric field

Example 1: grounded wire

- Galvanic part $(-\nabla \phi)$
- Inductive part ($-i \omega A$)
- Total electric field:
$E=-\nabla \phi-i \omega A$

Hormoz Jahandari and Colin G. Farquharson
$21 / 35$

Example 1: grounded wire

- Total current density: $J=-\sigma \nabla \phi-i \omega \sigma A$
- Inductive part ($-i \omega \sigma A$)
- Galvanic part $(-\sigma \nabla \phi)$

Example 1: grounded wire

- Cumulative error versus the changing cell size at the observation points

Example 1: grounded wire

Example 2: Ovoid, HEM survey

- Ovoid: massive sulfide ore body, Voisey's Bay, Labrador, Canada
- HEM survey of the region has been simulated
- Transmitter and receiver towed below the helicopter 30 m above ground
- Transmitter-receiver separation was 8 m and the frequencies were 900 and 7200 Hz
- $\sigma_{\text {ground }}=0.001$ and $\sigma_{\text {ovoid }}=100 \mathrm{~S} / \mathrm{m}$ were chosen by try-and-error
- Number of tetrahedra: 240,692

Example 2: Ovoid, HEM survey

- Topography of the region

Example 2: Ovoid, HEM survey

- White dots show the observation points

Example 2: Ovoid, HEM survey

- The plan view

Example 2: Ovoid, HEM survey

- Grid refined at the sources and observation points

Example 2: Ovoid, HEM survey

- FV results (circles) vs real HEM data (lines)

Example 2: Ovoid, HEM survey

- Amplitude of the horizontal component of total current density at a vertical section along the observation profile

Example 2: Ovoid, HEM survey

In phase
Quadrature

- Galvanic part $(-\sigma \nabla \phi)$
- Inductive part ($-i \omega \sigma A$)
- Total current density: $J=-\sigma \nabla \phi-i \omega \sigma A$

Hormoz Jahandari and Colin G. Farquharson

Conclusions

- A finite-volume approach was used for modelling total field EM data. It used staggered tetrahedral-Voronoï grids.
- The potential formulation of Maxwell's equation was discretized and solved and compared to the solution of the EM-field formulation.
- Accuracy and versatility were tested using two examples: one with a grounded wire source and a small conductivity contrast; another one with a realistic body, magnetic sources and a large conductivity contrast.
- Unlike the EM-field scheme, the $A-\phi$ scheme could be solved using generic iterative solvers.
- The gauged problems were harder to solve than the ungauged problems.
- Solutions were decomposed into galvanic and inductive parts. The results were in good agreement with the type of sources that were used.
- While both EM-field and potential schemes possessed the same trends of accuracy, the potential approach showed lower cumulative errors.

Acknowledgements

- ACOA (Atlantic Canada Opportunities Agency)
- NSERC
(Natural Sciences and Engineering Research Council of Canada)
- Vale

Atlantic Canada Opportunities
Agency
VALE

- Amestoy, P. R., Guermouche, A., L'Excellent, J. -Y. and S. Pralet, 2006. Hybrid scheduling for the parallel solution of linear systems, Parallel Computing, 32, 136156.
- Ansari, S. M., and C. G. Farquharson, 2013, Three-dimensional modeling of controlled-source electromagnetic response for inductive and galvanic components: Presented at the 5th International Symposium on Three-Dimensional Electromagnetics.
- Farquharson, C. G., and D. W. Oldenburg, 2002, An integral-equation solution to the geophysical electromagnetic forward-modelling problem, in Three-Dimensional Electromagnetics: Proceedings of the Second International Symposium: Elsevier, 319.
- Farquharson, C. G., Duckworth, K. and D. W. Oldenburg, 2006. Comparison of integral equation and physical scale modeling of the electromagnetic responses of models with large conductivity contrasts, Geophysics, 71, G169-G177.
- Madsen, N. K., and R. W. Ziolkowski, 1990, A three-dimensional modified finite volume technique for Maxwell's equations: Electromagnetics, 10, 147-161.
- $\mathrm{Si}, \mathrm{H} ., 2004$. TetGen, a quality tetrahedral mesh generator and three-dimensional delaunay triangulator, v1.3 (Technical Report No. 9). Weierstrass Institute for Applied Analysis and Stochastics.
- Saad, Y., 1990. SPARSKIT: a basic tool kit for sparse matrix computations. Report RIACS 90-20, Research Institute for Advanced Computer Science. NASA Ames Research Center.

