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Introduction

Geologists’ interpretations about the Earth typically involve distinct rock
units with contacts between them, e.g. Fig. 1(a). In contrast, standard
minimum-structure voxel-based inversions recover smooth models incon-
sistent with such interpretations, e.g. Fig. 1(b). There are several ap-
proaches through which voxel-based geophysical inversion can help re-
cover models with the desired characteristics, e.g. iterative strategies, regu-
larization design, level set methods and clustering strategies [1]. However,
the underlying parameterization of the Earth is still inconsistent with ge-
ologists’ interpretations. We are researching a fundamentally different
type of inversion that parameterizes the Earth in terms of the contact
surfaces between rock units.

(a) (b)

Figure 1 : (a) A geological model from the Voisey’s Bay Eastern Deeps deposit,
comprising wireframe surfaces of tessellated triangles. Three surfaces are visible: the
topography surface is shown as a transparent white wireframe, a sulphide body is shown
as a red surface, and a contact between gneiss and troctolite is shown as a yellow
surface with black edges highlighting the facets. (b) A typical smooth distribution
recovered from minimum-structure voxel-based inversion.

Methods

3D geological Earth models typically comprise wireframe surfaces of tes-
sellated triangles or other polygonal planar facets, e.g. Fig. 1(a). This
wireframe representation allows for flexible and efficient generation of com-
plicated geological structures. In our geophysical inversions, we param-
eterize the wireframe contact surfaces as the coordinates of the nodes
(facet vertices). We solve for the locations of the nodes through a Par-
ticle Swarm Optimization strategy [2, 3] and follow this with a more
rigorous Metropolis Hastings stochastic sampling to provide statisti-
cal information. These global optimization methods introduce high com-
putational costs; to provide computationally feasible inversion methods, we
reduce the dimensionality of the problem by parameterizing the nodes
in a coarse representation of the geological wireframe model and we
use surface subdivision [4, 5] to refine further. This also provides a
simple and effective way to regularize the inverse problem.

Figure 2 : Three subdivision iterations on a triangular wireframe model. The facet edges
are coloured lighter away from the viewer.

Synthetic ellipsoid example

In this and the following section, we invert synthetic gravity gradiom-
etry data collected above two bodies. The data is contaminated with a
realistic level of noise prior to inversion. Our first example, Figs. 3 & 4,
involves a dipping isolated body of ellipsoid-like shape. The control
surface is prism-like, defined by 8 nodes. The control surface was subdi-
vided twice to obtain the candidate models. This example is similar to the
salt-dome illustrative example presented by [6], in which a relatively simple
shape is represented by a wireframe surface and moved using a few shape
parameters, e.g. that describe the stem radius, height and thickness of the
cap. Our inversion methods provide more flexibility in the ways in which the
shape can move and contort. The recovered model fits well to the true
model, with consistent location, orientation and aspect ratios. The re-
covery of the deeper end of the body is slightly worse than for the shallower
end. This is expected due to the lowered sensitivity of the gradiometry data
with increasing depth. The stochastic sampling provides a consistent story,
with lower standard deviations closer to the data.

Figure 3 : Inversion results for our synthetic ellipsoid example. The true model is shown
as a black wireframe. The control surfaces for the true and recovered models are red and
green respectively. The green control nodes were allowed to move within a large volume,
shown here in white. The recovered model is coloured by the standard deviations
associated with the facet locations (blue low, red high). The data locations are plotted as
coloured dots (coloured by the XY component). The view at left is from the side and the
view at right from overhead.
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Figure 4 : Map views of the observed and predicted gravity gradiometry data for our
synthetic ellipsoid example. Colour scales are identical for each observed and predicted
component pair. Black dots indicate data locations.

Synthetic sheet example

Our second example, Figs. 5 & 6, involves an undulating dipping
sheet, roughly S-shaped in cross-section, representing part of a 3D
geological model. The control surface for the true model is defined by 16
nodes. The control surface for the inversion contains 21 nodes, 9 of which
we allowed to move, the remaining 12 define the outline of the sheet and re-
mained stationary in the inversion. Both control surfaces were subdivided
twice to obtain the true and candidate models. This example has similar
characteristics to the basin geology inversion example presented by [6], in
which a roughly horizontal contact between alluvial overburden and bedrock
was represented by a wireframe surface. In their example, the nodes in the
wireframe surface were allowed to move vertically. Again, in our methods
we provide more flexibility in the ways in which the wireframe model can
move and contort, and our subdivision strategy ensures that surfaces are
recovered with smooth curvatures. The recovered model follows the true
surface well, a promising result for this complicated scenario.

Figure 5 : Inversion results for our synthetic sheet example. The true model is shown as
a black wireframe. The control surfaces for the true and recovered models are red and
green respectively. The green control nodes were allowed to move within a large volume,
shown here in white. The recovered model is coloured grey here to simplify the images.
The data locations are plotted as coloured dots (coloured by the XY component). The
view at left is from the side and the view at right from overhead.
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Figure 6 : Map views of the observed and predicted gravity gradiometry data for our
synthetic sheet example. Colour scales are identical for each observed and predicted
component pair. Black dots indicate data locations.

Real data example

In this example, Fig. 7, we invert gravity data collected above an IOCG
deposit in South Australia. IOCG deposits are thought to form as pipe-like
or fault-bound hydrothermal breccias. Our preliminary recovered model
is consistent with the understanding of the geology and with voxel
inversion results.

Figure 7 : Inversion results for our real data example. The control surface for the
recovered model is green. The recovered model is coloured by the standard deviations
associated with the facet locations (blue low, red high). The facets in the recovered
surface are outlined in black. The data locations are plotted as coloured dots (coloured by
the data values). The view at left is from the south and the view at right from overhead
(north up).

Conclusion

We are developing and researching inversion methods that represent the
Earth as wireframe surfaces. Such models can better emphasize distinct
rock units, and the contacts between them, than typical minimum-structure
inversions. Despite the computational challenges involved, methods for pa-
rameter reduction and parallelization can be applied to significantly limit
computation times. This work provides computationally feasible ap-
proaches for working with subsurface parameterizations that can pro-
duce Earth models more compatible with the way geologists typically
think of the subsurface.
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