Unified geophysical and geological 3-D Earth models

Colin Farquharson, **Peter Lelièvre**, and Charles Hurich

Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.

Acknowledgments

 * Students: Seyedmasoud Ansari, Hormoz Jahandari, Mike Ash, Angela Carter-McAuslan, Cassandra Tycholiz.

 \star Financial support from ACOA, NSERC, and Vale.

Goal

 \star A single 3-D Earth model for both geology and geophysics.

Outline

- \star Geological models
- \star Geophysical models and numerical modelling
- \star Rectilinear grids vs. unstructured grids
- \star Working with unstructured grids

Geological models: tessellated surfaces

Voisey's Bay Ovoid ore-body and troctolite.

Geological models: tessellated surfaces

- \star Surfaces consist of connected triangles.
- \star Can capture arbitrarily complicated subsurface contacts.

Geophysical models: rectilinear grids

Geophysical models: rectilinear grids

 \star Regular mesh of brick-like cells, physical properties uniform within each cell but different between cells . . .

 $\rightarrow\,$ Pixellated representation of the subsurface.

- \star Mathematics for computing data response are easier.
- \star In principle, arbitrary spatial variations can be represented if a sufficiently fine discretization is used.

- ★ Previous example: $87 \times 61 \times 54 = 286,578$ cells ... → a reasonably fine discretization.
- \star But "staircasing" of contacts still evident.
- * Finer is possible, but computation times and memory requirements quickly become inconvenient / infeasible.

(Cassandra Tycholiz, M.Sc. student)

 ★ Discretize the volume between surfaces while maintaining exactly the tessellated surfaces.

- \star Geological and geophysical models can share the same grid . . .
 - $\rightarrow\,$ can be the same model,
 - $\rightarrow\,$ no translation or transformation from one kind of model to the other.

* Unstructured discretizations can capture fine-scale structure without greatly increasing memory requirements.

 \star But we need to perform the mathematics on the unstructured tetrahedral grids,

 \star And build and manipulate Earth models discretized using an unstructured tetrahedral grid.

Computing synthetic geophysical data: gravity

 \star Closed-form expression for a tetrahedron (Okabe, 1979).

 \star Finite-volume solution of Poisson's equation . . .

(Hormoz Jahandari, Ph.D. student.)

Computing synthetic geophysical data: EM

 \star Decomposition into inductive and galvanic parts . . .

$$\mathbf{E} = -i\omega\mathbf{A} - \nabla\phi.$$

 \star Finite-element solution using edge and nodal elements . . .

(Seyedmasoud Ansari, Ph.D. student.)

Computing synthetic geophysical data: seismic traveltimes

 \star Fast marching method . . .

Geophysical inversion: seismic traveltimes

Geophysical inversion: seismic traveltimes

Geophysical inversion: joint seismic traveltime and gravity

slowness

density

Manipulating unstructured tetrahedral Earth models

 \star Automated surface reconstruction from point clouds.

Manipulating unstructured tetrahedral Earth models

 \star By hand, making use of 3-D graphics and visualization software.

Conclusions

- \star Unstructured tetrahedral grids . . .
 - $\rightarrow\,$ can honour geological surfaces,
 - $\rightarrow\,$ can represent fine-scale structure, and yet
 - $\rightarrow\,$ are efficient discretizations of the modelling domain.

 \star A single 3-D Earth model for both geology and geophysics.