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Svalbard



The glacier in Svalbard: Bakaninbreen
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The glacier
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Debye and Cole-Cole models
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Polarizable halfspace
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Two-layer model, polarizable over non-polarizable
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Two-layer model, non-polarizable over polarizable
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Conclusions from numerical modelling

⋆ Double sign change can be easily mimicked using a simple
complex-valued, frequency-dependent model of
conductivity (i.e., Debye).

⋆ Slight preference for a two-layer Earth model, rather than a
homogeneous polarizable halfspace.
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What is the physical mechanism?

• Traditional explanations for polarization effects in
exploration geophysics:

◦ electrode polarization – disseminated sulphides;

◦ membrane polarization – clays.



What is the physical mechanism?

• But what about an explanation that’s relevant here . . .

◦ the ice itself;

◦ membrane polarization – ice–sediment mixture;

◦ membrane polarization – ice–water mixture?
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Summary

• Double sign changes have been observed in time-domain EM
sounding data from a glacier.

• These sign changes can be easily reproduced mathematically
with a complex-valued, frequency-dependent model of
conductivity, such as the Debye model.

• The physical mechanism responsible for the polarization
effects is unknown. It might be a consequence of an ice–
water mixture, an ice–sediment mixture, or a property of
the ice itself.


