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Outline

• Introduction: a brief history of EM numerical modelling
in geophysics.

• Another integral equation modelling program.

• Comparison with physical scale modelling results.



Introduction: a brief history

• The classic scenario, e.g., Heath Steele Stratmat, NB:
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Introduction: a brief history

• Two main approaches to numerical modelling:

◦ integral equation;

◦ finite-difference/finite-element.



Introduction: a brief history

• Progression:

◦ early interest in integral equation methods;

◦ present interest in finite-difference &
finite-element methods.

� But implementations of integral equation methods
failed for large contrasts.

For example . . .
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Another integral equation modelling program

• Maxwell’s equations:

∇×E = iωµH, ∇×H = σE + JS ;

and conservation of charge:

∇ ·
�
σE

�
= −∇ · JS .

• Differential equation for electric field:

−∇2E + ∇

�

∇ ·E

�

− iωµσE = iωµJS .



Another integral equation modelling program

• Divide into background and anomalous:

σ = σb + ∆σ, E = Eb +Es;

• such that

∇×Eb = iωµHb, ∇×Hb = σbEb + JS ;

and

∇ ·

�
σbEb

�
= −∇ · JS .

• Hence, differential equation for secondary electric field:

−∇2Es + ∇

�

∇ ·Es

�

− iωµσbEs = iωµ∆σE.



Another integral equation modelling program

• Solution via Green’s functions and integration over
anomalous region:

E = Eb + iωµ

Z
Va

G(1) · E∆σ dv +

Z

Va

G(2)∇ ·E dv.

• The Green’s functions:

G(1) =

0
@ g

w 0 0
0 gw 0
0 0 gw

1
A , G(2) = ∇gw,

gw(r; r′) =
1

4π

exp(ikb|r− r
′|)

|r− r′|
, k2b = iωµσb.



Another integral equation modelling program

• Traditional implementation:

◦ pulse basis functions,

◦ approximation of both integrals by integrations over
equivalent spheres.

• New approach:

◦ edge element basis functions,

◦ volume & surface integrations kept separate,

◦ Gaussian quadrature evaluation of integrals,

◦ contrast (or lack thereof) between neighbouring cells
kept explicit.



Comparison with physical scale modelling results



Comparison with physical scale modelling results

20 cm 2 cm
2 cm

15 cm

15 cm

Graphite
6300 S/m

Brine
6 S/m



Comparison with physical scale modelling results



Comparison with physical scale modelling results



Comparison with physical scale modelling results



Comparison with physical scale modelling results



Comparison with physical scale modelling results



Comparison with physical scale modelling results

inphase

-7.5

0.0

7.5
-7.5 0.0 7.5

quadrature

-7.5

0.0

7.5
-7.5 0.0 7.5



Comparison with physical scale modelling results

inphase

-7.5

0.0

7.5
-7.5 0.0 7.5

quadrature

-7.5

0.0

7.5
-7.5 0.0 7.5



Comparison with physical scale modelling results

inphase

-7.5

0.0

7.5
-7.5 0.0 7.5

quadrature

-7.5

0.0

7.5
-7.5 0.0 7.5



Comparison with physical scale modelling results


